IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v67y2023ics106294082300044x.html
   My bibliography  Save this article

Robust optimal reinsurance–investment for α-maxmin mean–variance utility under Heston’s SV model

Author

Listed:
  • Chen, Dengsheng
  • He, Yong
  • Li, Ziqiang

Abstract

Most literatures about robust optimal reinsurance–investment problem aim to maximum the value function under the worst-case scenario, but some insurers are optimistic, so it is more reasonable to consider a more smooth criterion named α-maxmin criterion which seek a balance between the worst-case scenario and best-case scenario. Furthermore, the past performance of insurance company will heavily impact the reinsurance–investment strategy of insurer, by introducing the capital flow related to the historical performance of the insurer, the wealth process can be described by stochastic delay differential equation. In this paper, we consider the robust optimal reinsurance–investment strategy for an α-maxmin mean–variance insurer with delay under Heston’s stochastic volatility stock model, the verification theorem is given and the closed-form solutions of value function and optimal strategies are obtained, respectively. In the part of numerical analysis, we illustrate the influence of some important parameters on the optimal strategies.

Suggested Citation

  • Chen, Dengsheng & He, Yong & Li, Ziqiang, 2023. "Robust optimal reinsurance–investment for α-maxmin mean–variance utility under Heston’s SV model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
  • Handle: RePEc:eee:ecofin:v:67:y:2023:i:c:s106294082300044x
    DOI: 10.1016/j.najef.2023.101921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S106294082300044X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.101921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Danping Li & Yan Zeng & Hailiang Yang, 2018. "Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(2), pages 145-171, February.
    4. Sun, Jingyun & Yao, Haixiang & Kang, Zhilin, 2019. "Robust optimal investment–reinsurance strategies for an insurer with multiple dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 157-170.
    5. Ghirardato, Paolo & Maccheroni, Fabio & Marinacci, Massimo, 2004. "Differentiating ambiguity and ambiguity attitude," Journal of Economic Theory, Elsevier, vol. 118(2), pages 133-173, October.
    6. Massimo Marinacci, 2002. "Probabilistic Sophistication and Multiple Priors," Econometrica, Econometric Society, vol. 70(2), pages 755-764, March.
    7. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    8. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    9. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    10. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    11. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    2. Lu Yang & Chengke Zhang & Huainian Zhu, 2022. "Robust Stochastic Stackelberg Differential Reinsurance and Investment Games for an Insurer and a Reinsurer with Delay," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 361-384, March.
    3. Li, Bin & Li, Danping & Xiong, Dewen, 2016. "Alpha-robust mean-variance reinsurance-investment strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 101-123.
    4. Qiang Zhang & Ping Chen, 2020. "Optimal Reinsurance and Investment Strategy for an Insurer in a Model with Delay and Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 777-801, June.
    5. Zhang, Liming & Li, Bin, 2021. "Optimal reinsurance under the α-maxmin mean-variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 225-239.
    6. Feng, Yang & Siu, Tak Kuen & Zhu, Jinxia, 2024. "Optimal payout strategies when Bruno de Finetti meets model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 148-164.
    7. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    8. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    9. Guan, Guohui & Li, Bin, 2022. "Equilibrium investment and reinsurance strategies under smooth ambiguity with a general second-order distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    10. Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
    11. Zeng, Yan & Li, Danping & Gu, Ailing, 2016. "Robust equilibrium reinsurance-investment strategy for a mean–variance insurer in a model with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 138-152.
    12. Loïc Berger & Louis Eeckhoudt, 2021. "Risk, Ambiguity, and the Value of Diversification," Management Science, INFORMS, vol. 67(3), pages 1639-1647, March.
    13. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    14. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    15. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    16. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    17. Pun, Chi Seng & Wong, Hoi Ying, 2015. "Robust investment–reinsurance optimization with multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 245-256.
    18. A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
    19. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    20. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.

    More about this item

    Keywords

    Reinsurance–investment problem; α-maxmin criterion; Delay; Heston’s stochastic volatility;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:67:y:2023:i:c:s106294082300044x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.