IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.09059.html
   My bibliography  Save this paper

Risk-dependent centrality in the Brazilian stock market

Author

Listed:
  • Michel Alexandre
  • Kau^e Lopes de Moraes
  • Francisco Aparecido Rodrigues

Abstract

The purpose of this paper is to calculate the risk-dependent centrality (RDC) of the Brazilian stock market. We computed the RDC for assets traded on the Brazilian stock market between January 2008 to June 2020 at different levels of external risk. We observed that the ranking of assets based on the RDC depends on the external risk. Rankings' volatility is related to crisis events, capturing the recent Brazilian economic-political crisis. Moreover, we have found a negative correlation between the average volatility of assets' ranking based on the RDC and the average daily returns on the stock market. It goes in hand with the hypothesis that the rankings' volatility is higher in periods of crisis.

Suggested Citation

  • Michel Alexandre & Kau^e Lopes de Moraes & Francisco Aparecido Rodrigues, 2021. "Risk-dependent centrality in the Brazilian stock market," Papers 2103.09059, arXiv.org.
  • Handle: RePEc:arx:papers:2103.09059
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.09059
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Martinez-Jaramillo, Serafin & Alexandrova-Kabadjova, Biliana & Bravo-Benitez, Bernardo & Solórzano-Margain, Juan Pablo, 2014. "An empirical study of the Mexican banking system’s network and its implications for systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 242-265.
    3. Temizsoy, Asena & Iori, Giulia & Montes-Rojas, Gabriel, 2017. "Network centrality and funding rates in the e-MID interbank market," Journal of Financial Stability, Elsevier, vol. 33(C), pages 346-365.
    4. Kuzubaş, Tolga Umut & Ömercikoğlu, Inci & Saltoğlu, Burak, 2014. "Network centrality measures and systemic risk: An application to the Turkish financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 203-215.
    5. Jaroslaw Kwapien & Pawel Oswiecimka & Marcin Forczek & Stanislaw Drozdz, 2016. "Minimum spanning tree filtering of correlations for varying time scales and size of fluctuations," Papers 1610.08416, arXiv.org, revised May 2017.
    6. Zhao, Longfeng & Wang, Gang-Jin & Wang, Mingang & Bao, Weiqi & Li, Wei & Stanley, H. Eugene, 2018. "Stock market as temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1104-1112.
    7. Paolo Bartesaghi & Michele Benzi & Gian Paolo Clemente & Rosanna Grassi & Ernesto Estrada, 2019. "Risk-dependent centrality in economic and financial networks," Papers 1907.07908, arXiv.org, revised Apr 2020.
    8. Gilmore, Claire G. & Lucey, Brian M. & Boscia, Marian, 2008. "An ever-closer union? Examining the evolution of linkages of European equity markets via minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6319-6329.
    9. Rossi, Alberto G. & Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2018. "Network centrality and delegated investment performance," Journal of Financial Economics, Elsevier, vol. 128(1), pages 183-206.
    10. M. D'Errico & R. Grassi & S. Stefani & A. Torriero, 2009. "Shareholding Networks and Centrality: An Application to the Italian Financial Market," Lecture Notes in Economics and Mathematical Systems, in: Ahmad K. Naimzada & Silvana Stefani & Anna Torriero (ed.), Networks, Topology and Dynamics, pages 215-228, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deev, Oleg & Lyócsa, Štefan, 2020. "Connectedness of financial institutions in Europe: A network approach across quantiles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Michel Alexandre & Thiago Christiano Silva & Colm Connaughton & Francisco A. Rodrigues, 2021. "The Role of (non-)Topological Features as Drivers of Systemic Risk: a machine learning approach," Working Papers Series 556, Central Bank of Brazil, Research Department.
    3. Alexandre, Michel & Silva, Thiago Christiano & Connaughton, Colm & Rodrigues, Francisco A., 2021. "The drivers of systemic risk in financial networks: a data-driven machine learning analysis," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    5. Sun, Bowen & Li, Huajiao & An, Pengli & Wang, Ze, 2020. "Dynamic energy stock selection based on shareholders’ coholding network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    6. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    7. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    8. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    9. Elosegui, Pedro & Forte, Federico D. & Montes-Rojas, Gabriel, 2022. "Network structure and fragmentation of the Argentinean interbank markets," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(3).
    10. Anna Maria D’Arcangelis & Giulia Rotundo, 2016. "Complex Networks in Finance," Lecture Notes in Economics and Mathematical Systems, in: Pasquale Commendatore & Mariano Matilla-García & Luis M. Varela & Jose S. Cánovas (ed.), Complex Networks and Dynamics, pages 209-235, Springer.
    11. Lu, Shan & Zhao, Jichang & Wang, Huiwen & Ren, Ruoen, 2018. "Herding boosts too-connected-to-fail risk in stock market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 945-964.
    12. Yangguang Zhu & Feng Yang & Wuyi Ye, 2018. "Financial contagion behavior analysis based on complex network approach," Annals of Operations Research, Springer, vol. 268(1), pages 93-111, September.
    13. Lillo, Felipe & Valdés, Rodrigo, 2016. "Dynamics of financial markets and transaction costs: A graph-based study," Research in International Business and Finance, Elsevier, vol. 38(C), pages 455-465.
    14. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    15. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    16. Frank Emmert-Streib & Aliyu Musa & Kestutis Baltakys & Juho Kanniainen & Shailesh Tripathi & Olli Yli-Harja & Herbert Jodlbauer & Matthias Dehmer, 2017. "Computational Analysis of the structural properties of Economic and Financial Networks," Papers 1710.04455, arXiv.org.
    17. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    18. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    19. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    20. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.09059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.