IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.08041.html
   My bibliography  Save this paper

One-dimensional game-theoretic differential equations

Author

Listed:
  • Rafa{l} M. {L}ochowski
  • Nicolas Perkowski
  • David J. Promel

Abstract

We provide a very brief introduction to typical paths and the corresponding It\^o type integration. Relying on this robust It\^o integration, we prove an existence and uniqueness result for one-dimensional differential equations driven by typical paths with non-Lipschitz continuous coefficients in the spirit of Yamada--Watanabe as well as an approximation result in the spirit of Doss--Sussmann.

Suggested Citation

  • Rafa{l} M. {L}ochowski & Nicolas Perkowski & David J. Promel, 2021. "One-dimensional game-theoretic differential equations," Papers 2101.08041, arXiv.org.
  • Handle: RePEc:arx:papers:2101.08041
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.08041
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
    2. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    3. Łochowski, Rafał M. & Miłoś, Piotr, 2013. "On truncated variation, upward truncated variation and downward truncated variation for diffusions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 446-474.
    4. Łochowski, Rafał M. & Perkowski, Nicolas & Prömel, David J., 2018. "A superhedging approach to stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4078-4103.
    5. Vladimir Vovk, 2017. "The role of measurability in game-theoretic probability," Finance and Stochastics, Springer, vol. 21(3), pages 719-739, July.
    6. Nicolas Perkowski & David J. Promel, 2014. "Local times for typical price paths and pathwise Tanaka formulas," Papers 1405.4421, arXiv.org, revised Apr 2015.
    7. Nicolas Perkowski & David J. Promel, 2013. "Pathwise stochastic integrals for model free finance," Papers 1311.6187, arXiv.org, revised Jun 2016.
    8. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    9. Vladimir Vovk, 2015. "Purely pathwise probability-free Ito integral," Papers 1512.01698, arXiv.org, revised Jun 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bender & Sebastian Ferrando & Alfredo Gonzalez, 2021. "Model-Free Finance and Non-Lattice Integration," Papers 2105.10623, arXiv.org.
    2. Łochowski, Rafał M. & Perkowski, Nicolas & Prömel, David J., 2018. "A superhedging approach to stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4078-4103.
    3. Lesiba Ch. Galane & Rafa{l} M. {L}ochowski & Farai J. Mhlanga, 2018. "On SDEs with Lipschitz coefficients, driven by continuous, model-free martingales," Papers 1807.05692, arXiv.org, revised Feb 2022.
    4. Vladimir Vovk & Glenn Shafer, 2016. "A probability-free and continuous-time explanation of the equity premium and CAPM," Papers 1607.00830, arXiv.org.
    5. Lesiba Ch. Galane & Rafa{l} M. {L}ochowski & Farai J. Mhlanga, 2017. "On the quadratic variation of the model-free price paths with jumps," Papers 1710.07894, arXiv.org, revised May 2018.
    6. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    7. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.
    8. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    9. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2017. "Pathwise superhedging on prediction sets," Papers 1711.02764, arXiv.org, revised Oct 2019.
    10. Rafa{l} M. {L}ochowski, 2015. "Integration with respect to model-free price paths with jumps," Papers 1511.08194, arXiv.org, revised Sep 2016.
    11. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    12. Vladimir Vovk & Glenn Shafer, 2017. "Towards a probability-free theory of continuous martingales," Papers 1703.08715, arXiv.org.
    13. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    14. Vladimir Vovk, 2016. "Another example of duality between game-theoretic and measure-theoretic probability," Papers 1608.02706, arXiv.org.
    15. Vladimir Vovk, 2017. "The role of measurability in game-theoretic probability," Finance and Stochastics, Springer, vol. 21(3), pages 719-739, July.
    16. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    17. Vladimir Vovk, 2016. "Getting rich quick with the Axiom of Choice," Papers 1604.00596, arXiv.org, revised Mar 2017.
    18. Rafa{l} M. {L}ochowski, 2021. "BDG inequalities and their applications for model-free continuous price paths with instant enforcement," Papers 2109.07928, arXiv.org, revised Aug 2023.
    19. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    20. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.08041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.