IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.07516.html
   My bibliography  Save this paper

Naive Markowitz Policies

Author

Listed:
  • Lin Chen
  • Xun Yu Zhou

Abstract

We study a continuous-time Markowitz mean-variance portfolio selection model in which a naive agent, unaware of the underlying time-inconsistency, continuously reoptimizes over time. We define the resulting naive policies through the limit of discretely naive policies that are committed only in very small time intervals, and derive them analytically and explicitly. We compare naive policies with pre-committed optimal policies and with consistent planners' equilibrium policies in a Black-Scholes market, and find that the former are mean-variance inefficient starting from any given time and wealth, and always take riskier exposure than equilibrium policies.

Suggested Citation

  • Lin Chen & Xun Yu Zhou, 2022. "Naive Markowitz Policies," Papers 2212.07516, arXiv.org.
  • Handle: RePEc:arx:papers:2212.07516
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.07516
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    2. Nicholas Barberis, 2012. "A Model of Casino Gambling," Management Science, INFORMS, vol. 58(1), pages 35-51, January.
    3. Jianming Xia, 2005. "Mean–Variance Portfolio Choice: Quadratic Partial Hedging," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 533-538, July.
    4. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keffert, Henk, 2024. "Robo-advising: Optimal investment with mismeasured and unstable risk preferences," European Journal of Operational Research, Elsevier, vol. 315(1), pages 378-392.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuzhen Yang, 2020. "Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis," Papers 2011.10966, arXiv.org.
    2. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    3. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    4. Shuzhen Yang, 2019. "A varying terminal time mean-variance model," Papers 1909.13102, arXiv.org, revised Jan 2020.
    5. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    6. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    7. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    8. Wong, K.C. & Yam, S.C.P. & Zeng, J., 2019. "Mean-risk portfolio management with bankruptcy prohibition," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 153-172.
    9. Chonghu Guan & Xiaomin Shi & Zuo Quan Xu, 2022. "Continuous-time Markowitz's mean-variance model under different borrowing and saving rates," Papers 2201.00914, arXiv.org, revised May 2023.
    10. Shuzhen Yang, 2019. "Multi-time state mean-variance model in continuous time," Papers 1912.01793, arXiv.org.
    11. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    12. Chen, Shumin & Zeng, Yan & Hao, Zhifeng, 2017. "Optimal dividend strategies with time-inconsistent preferences and transaction costs in the Cramér–Lundberg model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 31-45.
    13. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    14. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    15. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
    16. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    17. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    18. Embrey, Matthew & Seel, Christian & Philipp Reiss, J., 2024. "Gambling in risk-taking contests: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 221(C), pages 570-585.
    19. Xin Huang & Duan Li & Daniel Zhuoyu Long, 2020. "Scenario-decomposition Solution Framework for Nonseparable Stochastic Control Problems," Papers 2010.08985, arXiv.org.
    20. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.07516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.