IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v51y2018i4d10.1007_s10614-017-9655-y.html
   My bibliography  Save this article

Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals

Author

Listed:
  • Vivien Lespagnol

    (CNRS, EHESS and Centrale Marseille)

  • Juliette Rouchier

    (PSL Research University, CNRS and LAMSADE)

Abstract

This paper investigates whether trading volume and price distortion can be explained by the investor’s bounded rationality. Assuming that agents are bounded by their information access and processing, what are the consequences on market dynamics? We expose the result of simulations in an ABM that considers the liquidity as an endogenous characteristic of the market and allows to design investors as bounded rational. In a call auction market, where two risky assets are exchanged, traders are defined as a mix between fundamentalist and trend-follower outlook. Each one differs as to behaviour, order-placement strategy, mood, knowledge, risk-aversion and investment horizon. We place agents in a context of evolving fundamental values and order placement strategy; they perceive the fundamental but they also have some heterogeneous belief perseverance; and they adapt their orders to the market depth so as to maximise their execution probability and their profit. By adding bounded rationality in their information processing, we show that (1) usual features as trend-follower outlook and heterogeneous investment horizon are important features to generate excess volatility of asset prices and market inefficiency; (2) the learning fundamental value stabilises the market price and the trading volume; (3) the order-placement strategy increases trading volume, but reduces market efficiency and stability; (4) the agent’s mood prevents illiquid market and weakly increases the market volatility as classical noise trader agents; (5) the impatience to sell of traders is always present in the market: the market sell orders are always more numerous than the market buy orders.

Suggested Citation

  • Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 991-1020, April.
  • Handle: RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9655-y
    DOI: 10.1007/s10614-017-9655-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9655-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9655-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    4. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    5. Tedeschi, Gabriele & Iori, Giulia & Gallegati, Mauro, 2012. "Herding effects in order driven markets: The rise and fall of gurus," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 82-96.
    6. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    7. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    8. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    9. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    10. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    11. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    12. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    13. Grossman, S.J. & Miller, M.H., 1988. "Liquidity And Market Structure," Papers 88, Princeton, Department of Economics - Financial Research Center.
    14. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    15. Bao, Te & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2012. "Individual expectations, limited rationality and aggregate outcomes," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1101-1120.
    16. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2003. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, edition 1, volume 1, number 1.
    17. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    18. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    19. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    20. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    21. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    22. Amihud, Yakov & Mendelson, Haim & Pedersen, Lasse Heje, 2006. "Liquidity and Asset Prices," Foundations and Trends(R) in Finance, now publishers, vol. 1(4), pages 269-364, February.
    23. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    24. Yamamoto, Ryuichi, 2011. "Order aggressiveness, pre-trade transparency, and long memory in an order-driven market," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1938-1963.
    25. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    26. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    27. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    28. G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2003. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, edition 1, volume 1, number 2.
    29. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    30. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    31. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 408-427, March.
    32. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
    33. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    34. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    35. Westerhoff, Frank H., 2004. "Multiasset Market Dynamics," Macroeconomic Dynamics, Cambridge University Press, vol. 8(5), pages 596-616, November.
    36. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
    37. Parlour, Christine A, 1998. "Price Dynamics in Limit Order Markets," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 789-816.
    38. Christian Walter, 2007. "Critique de la valeur fondamentale," Post-Print halshs-00611112, HAL.
    39. Kovaleva, Polina & Iori, Giulia, 2015. "The impact of reduced pre-trade transparency regimes on market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 57(C), pages 145-162.
    40. Brad M. Barber & Terrance Odean, 2000. "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors," Journal of Finance, American Finance Association, vol. 55(2), pages 773-806, April.
    41. Jun Muranaga & Tokiko Shimizu, 1999. "Market Microstructure and Market Liquidity," CGFS Papers chapters, in: Bank for International Settlements (ed.), Market Liquidity: Research Findings and Selected Policy Implications, volume 11, pages 1-28, Bank for International Settlements.
    42. Cars Hommes & Joep Sonnemans & Jan Tuinstra & Henk van de Velden, 2005. "Coordination of Expectations in Asset Pricing Experiments," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 955-980.
    43. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    44. Robert Bloomfield & Maureen O'Hara & Gideon Saar, 2009. "How Noise Trading Affects Markets: An Experimental Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2275-2302, June.
    45. Domowitz, Ian, 1993. "A taxonomy of automated trade execution systems," Journal of International Money and Finance, Elsevier, vol. 12(6), pages 607-631, December.
    46. R. Yamamoto & B. LeBaron, 2010. "Order-splitting and long-memory in an order-driven market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 51-57, January.
    47. Vriend, Nicolaas J., 2006. "ACE Models of Endogenous Interactions," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 21, pages 1047-1079, Elsevier.
    48. Chowdhry, Bhagwan & Nanda, Vikram, 1991. "Multimarket Trading and Market Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 4(3), pages 483-511.
    49. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    50. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    51. Handa, Puneet & Schwartz, Robert & Tiwari, Ashish, 2003. "Quote setting and price formation in an order driven market," Journal of Financial Markets, Elsevier, vol. 6(4), pages 461-489, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    2. Xianfeng Jiao & Zizhong Li & Chang Xu & Yang Liu & Weiqing Liu & Jiang Bian, 2023. "Microstructure-Empowered Stock Factor Extraction and Utilization," Papers 2308.08135, arXiv.org.
    3. Changtai Li & Weihong Huang & Wei-Siang Wang & Wai-Mun Chia, 2023. "Price Change and Trading Volume: Behavioral Heterogeneity in Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 677-713, February.
    4. Bernardo Alves Furtado & Gustavo Onofre Andre~ao, 2022. "Machine Learning Simulates Agent-Based Model Towards Policy," Papers 2203.02576, arXiv.org, revised Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    2. Vivien Lespagnol & Juliette Rouchier, 2014. "Trading Volume and Market Efficiency: An Agent Based Model with Heterogenous Knowledge about Fundamentals," Working Papers halshs-00997573, HAL.
    3. Vivien Lespagnol & Juliette Rouchier, 2015. "What Is the Impact of Heterogeneous Knowledge About Fundamentals on Market Liquidity and Efficiency: An ABM Approach," Lecture Notes in Economics and Mathematical Systems, in: Frédéric Amblard & Francisco J. Miguel & Adrien Blanchet & Benoit Gaudou (ed.), Advances in Artificial Economics, edition 127, pages 105-117, Springer.
    4. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    5. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    6. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    7. Vivien Lespagnol & Juliette Rouchier, 2015. "Fair Price And Trading Price: An Abm Approach With Order-Placement Strategy And Misunderstanding Of Fundamental Value," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(05n06), pages 1-14, August.
    8. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    9. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    10. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    11. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    12. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    13. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    14. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    15. Frank H. Westerhoff, 2009. "Exchange Rate Dynamics: A Nonlinear Survey," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 11, Edward Elgar Publishing.
    16. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    17. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    18. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    19. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    20. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.

    More about this item

    Keywords

    Agent-based modelling; Market microstructure; Fundamental value; Trading volume; Efficient market;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9655-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.