IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.13092.html
   My bibliography  Save this paper

Learning Classifiers under Delayed Feedback with a Time Window Assumption

Author

Listed:
  • Masahiro Kato
  • Shota Yasui

Abstract

We consider training a binary classifier under delayed feedback (\emph{DF learning}). For example, in the conversion prediction in online ads, we initially receive negative samples that clicked the ads but did not buy an item; subsequently, some samples among them buy an item then change to positive. In the setting of DF learning, we observe samples over time, then learn a classifier at some point. We initially receive negative samples; subsequently, some samples among them change to positive. This problem is conceivable in various real-world applications such as online advertisements, where the user action takes place long after the first click. Owing to the delayed feedback, naive classification of the positive and negative samples returns a biased classifier. One solution is to use samples that have been observed for more than a certain time window assuming these samples are correctly labeled. However, existing studies reported that simply using a subset of all samples based on the time window assumption does not perform well, and that using all samples along with the time window assumption improves empirical performance. We extend these existing studies and propose a method with the unbiased and convex empirical risk that is constructed from all samples under the time window assumption. To demonstrate the soundness of the proposed method, we provide experimental results on a synthetic and open dataset that is the real traffic log datasets in online advertising.

Suggested Citation

  • Masahiro Kato & Shota Yasui, 2020. "Learning Classifiers under Delayed Feedback with a Time Window Assumption," Papers 2009.13092, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:2009.13092
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.13092
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gill Ward & Trevor Hastie & Simon Barry & Jane Elith & John R. Leathwick, 2009. "Presence-Only Data and the EM Algorithm," Biometrics, The International Biometric Society, vol. 65(2), pages 554-563, June.
    2. R. McAfee, 2011. "The Design of Advertising Exchanges," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 39(3), pages 169-185, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwemmer, Philipp & Güpner, Franziska & Adler, Sven & Klingbeil, Knut & Garthe, Stefan, 2016. "Modelling small-scale foraging habitat use in breeding Eurasian oystercatchers (Haematopus ostralegus) in relation to prey distribution and environmental predictors," Ecological Modelling, Elsevier, vol. 320(C), pages 322-333.
    2. Francesco Decarolis & Maris Goldmanis & Antonio Penta, 2020. "Marketing Agencies and Collusive Bidding in Online Ad Auctions," Management Science, INFORMS, vol. 66(10), pages 4433-4454, October.
    3. Emmanuel LORENZON, 2020. "Uninformed Bidding in Sequential Auctions," Bordeaux Economics Working Papers 2020-20, Bordeaux School of Economics (BSE).
    4. Yash Kanoria & Hamid Nazerzadeh, 2020. "Dynamic Reserve Prices for Repeated Auctions: Learning from Bids," Papers 2002.07331, arXiv.org.
    5. Saupe, E.E. & Barve, V. & Myers, C.E. & Soberón, J. & Barve, N. & Hensz, C.M. & Peterson, A.T. & Owens, H.L. & Lira-Noriega, A., 2012. "Variation in niche and distribution model performance: The need for a priori assessment of key causal factors," Ecological Modelling, Elsevier, vol. 237, pages 11-22.
    6. L. Elisa Celis & Gregory Lewis & Markus Mobius & Hamid Nazerzadeh, 2014. "Buy-It-Now or Take-a-Chance: Price Discrimination Through Randomized Auctions," Management Science, INFORMS, vol. 60(12), pages 2927-2948, December.
    7. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    8. Bichler, Martin & Merting, Sören, 2018. "Truthfulness in advertising? Approximation mechanisms for knapsack bidders," European Journal of Operational Research, Elsevier, vol. 270(2), pages 775-783.
    9. Erard Brian, 2022. "Modeling Qualitative Outcomes by Supplementing Participant Data with General Population Data: A New and More Versatile Approach," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 35-53, January.
    10. Masahiro Kato, 2019. "Identifying Different Definitions of Future in the Assessment of Future Economic Conditions: Application of PU Learning and Text Mining," Papers 1909.03348, arXiv.org, revised Apr 2020.
    11. Brennan, Tim, 2021. "Customer-Side Energy Management: What Role Should Utilities Play?," RFF Working Paper Series 21-03, Resources for the Future.
    12. Yash Kanoria & Hamid Nazerzadeh, 2021. "Incentive-Compatible Learning of Reserve Prices for Repeated Auctions," Operations Research, INFORMS, vol. 69(2), pages 509-524, March.
    13. Wang, Junhui & Fang, Yixin, 2013. "Analysis of presence-only data via semi-supervised learning approaches," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 134-143.
    14. Małgorzata Łazęcka & Jan Mielniczuk & Paweł Teisseyre, 2021. "Estimating the class prior for positive and unlabelled data via logistic regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 1039-1068, December.
    15. Keretz, Shay S. & Woolnough, Daelyn A. & Morris, Todd J. & Roseman, Edward F. & Zanatta, David T., 2024. "Habitat modelling of native freshwater mussels distinguishes river specific differences in the Detroit and St. Clair rivers of the Laurentian Great Lakes," Ecological Modelling, Elsevier, vol. 487(C).
    16. Brice B Hanberry & Hong S He & Brian J Palik, 2012. "Pseudoabsence Generation Strategies for Species Distribution Models," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    17. Fern, Rachel R. & Morrison, Michael L. & Wang, Hsiao-Hsuan & Grant, William E. & Campbell, Tyler A., 2019. "Incorporating biotic relationships improves species distribution models: Modeling the temporal influence of competition in conspecific nesting birds," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    18. Wenkai Li & Yuanchi Liu & Ziyue Liu & Zhen Gao & Huabing Huang & Weijun Huang, 2022. "A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling," Land, MDPI, vol. 11(11), pages 1-17, November.
    19. Robert M. Dorazio, 2012. "Predicting the Geographic Distribution of a Species from Presence-Only Data Subject to Detection Errors," Biometrics, The International Biometric Society, vol. 68(4), pages 1303-1312, December.
    20. Chen, Song & Qiu, Yongqin & Li, Jingmao & Fang, Kan & Fang, Kuangnan, 2023. "Precision marketing for financial industry using a PU-learning recommendation method," Journal of Business Research, Elsevier, vol. 160(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.13092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.