IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.03348.html
   My bibliography  Save this paper

Identifying Different Definitions of Future in the Assessment of Future Economic Conditions: Application of PU Learning and Text Mining

Author

Listed:
  • Masahiro Kato

Abstract

The Economy Watcher Survey, which is a market survey published by the Japanese government, contains \emph{assessments of current and future economic conditions} by people from various fields. Although this survey provides insights regarding economic policy for policymakers, a clear definition of the word "future" in future economic conditions is not provided. Hence, the assessments respondents provide in the survey are simply based on their interpretations of the meaning of "future." This motivated us to reveal the different interpretations of the future in their judgments of future economic conditions by applying weakly supervised learning and text mining. In our research, we separate the assessments of future economic conditions into economic conditions of the near and distant future using learning from positive and unlabeled data (PU learning). Because the dataset includes data from several periods, we devised new architecture to enable neural networks to conduct PU learning based on the idea of multi-task learning to efficiently learn a classifier. Our empirical analysis confirmed that the proposed method could separate the future economic conditions, and we interpreted the classification results to obtain intuitions for policymaking.

Suggested Citation

  • Masahiro Kato, 2019. "Identifying Different Definitions of Future in the Assessment of Future Economic Conditions: Application of PU Learning and Text Mining," Papers 1909.03348, arXiv.org, revised Apr 2020.
  • Handle: RePEc:arx:papers:1909.03348
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.03348
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brown, Donald J & Lewis, Lucinda M, 1981. "Myopic Economic Agents," Econometrica, Econometric Society, vol. 49(2), pages 359-368, March.
    2. Gill Ward & Trevor Hastie & Simon Barry & Jane Elith & John R. Leathwick, 2009. "Presence-Only Data and the EM Algorithm," Biometrics, The International Biometric Society, vol. 65(2), pages 554-563, June.
    3. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    4. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(2), pages 645-700.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mangee, Nicholas, 2024. "Stock price swings and fundamentals: The role of Knightian uncertainty," International Review of Financial Analysis, Elsevier, vol. 91(C).
    2. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    3. Freire, Gustavo, 2021. "Tail risk and investors’ concerns: Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    4. William N. Goetzmann & Dasol Kim & Robert J. Shiller, 2016. "Crash Beliefs From Investor Surveys," NBER Working Papers 22143, National Bureau of Economic Research, Inc.
    5. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    6. Siddiqi, Hammad, 2015. "Anchoring and Adjustment Heuristic: A Unified Explanation for Equity Puzzles," MPRA Paper 68729, University Library of Munich, Germany.
    7. Goedde-Menke, Michael & Langer, Thomas & Pfingsten, Andreas, 2014. "Impact of the financial crisis on bank run risk – Danger of the days after," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 522-533.
    8. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    9. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    10. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    11. Marlène Isoré, 2012. "Essays in macro-finance [Essais de macro-finance]," SciencePo Working papers Main tel-03669376, HAL.
    12. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    13. Lixiang Wang & Wendi Hou & Yupei Liu, 2023. "How do co‐shareholding networks affect negative media coverage? Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4221-4249, December.
    14. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    15. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    16. Bansal, Ravi & Miller, Shane & Song, Dongho & Yaron, Amir, 2021. "The term structure of equity risk premia," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1209-1228.
    17. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    18. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    19. William Ginn, 2022. "Climate Disasters and the Macroeconomy: Does State-Dependence Matter? Evidence for the US," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 141-161, March.
    20. Rui Liu & Jiayou Liang & Haolong Chen & Yujia Hu, 2024. "Analyst Reports and Stock Performance: Evidence from the Chinese Market," Papers 2411.08726, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.03348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.