IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.04171.html
   My bibliography  Save this paper

A Framework for Crop Price Forecasting in Emerging Economies by Analyzing the Quality of Time-series Data

Author

Listed:
  • Ayush Jain
  • Smit Marvaniya
  • Shantanu Godbole
  • Vitobha Munigala

Abstract

Accuracy of crop price forecasting techniques is important because it enables the supply chain planners and government bodies to take appropriate actions by estimating market factors such as demand and supply. In emerging economies such as India, the crop prices at marketplaces are manually entered every day, which can be prone to human-induced errors like the entry of incorrect data or entry of no data for many days. In addition to such human prone errors, the fluctuations in the prices itself make the creation of stable and robust forecasting solution a challenging task. Considering such complexities in crop price forecasting, in this paper, we present techniques to build robust crop price prediction models considering various features such as (i) historical price and market arrival quantity of crops, (ii) historical weather data that influence crop production and transportation, (iii) data quality-related features obtained by performing statistical analysis. We additionally propose a framework for context-based model selection and retraining considering factors such as model stability, data quality metrics, and trend analysis of crop prices. To show the efficacy of the proposed approach, we show experimental results on two crops - Tomato and Maize for 14 marketplaces in India and demonstrate that the proposed approach not only improves accuracy metrics significantly when compared against the standard forecasting techniques but also provides robust models.

Suggested Citation

  • Ayush Jain & Smit Marvaniya & Shantanu Godbole & Vitobha Munigala, 2020. "A Framework for Crop Price Forecasting in Emerging Economies by Analyzing the Quality of Time-series Data," Papers 2009.04171, arXiv.org.
  • Handle: RePEc:arx:papers:2009.04171
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.04171
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schlitzer, Giuseppe, 1995. "Testing the stationarity of economic time series: further Monte Carlo evidence," Ricerche Economiche, Elsevier, vol. 49(2), pages 125-144, June.
    2. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    3. Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
    4. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    5. G. Barbato & E. M. Barini & G. Genta & R. Levi, 2011. "Features and performance of some outlier detection methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2133-2149.
    6. Hongbing Ouyang & Xiaolu Wei & Qiufeng Wu, 2019. "Agricultural commodity futures prices prediction via long- and short-term time series network," Journal of Applied Economics, Taylor & Francis Journals, vol. 22(1), pages 468-483, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Zupan, 2024. "Accounting journal entries as a long‐term multivariate time series: Forecasting wholesale warehouse output," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
    2. Jorge-Eusebio Velasco-López & Ramón-Alberto Carrasco & Jesús Serrano-Guerrero & Francisco Chiclana, 2024. "Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics," Mathematics, MDPI, vol. 12(6), pages 1-23, March.
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    5. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    6. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    7. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    8. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    9. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    10. Sima Siami‐Namini & Darren Hudson & Adao Alexandre Trindade & Conrad Lyford, 2019. "Commodity price volatility and U.S. monetary policy: Commodity price overshooting revisited," Agribusiness, John Wiley & Sons, Ltd., vol. 35(2), pages 200-218, April.
    11. Fadi Kahwash & Basel Barakat & Ahmad Taha & Qammer H. Abbasi & Muhammad Ali Imran, 2021. "Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study," Energies, MDPI, vol. 14(21), pages 1-23, October.
    12. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    13. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    14. Lorenzo Menculini & Andrea Marini & Massimiliano Proietti & Alberto Garinei & Alessio Bozza & Cecilia Moretti & Marcello Marconi, 2021. "Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices," Forecasting, MDPI, vol. 3(3), pages 1-19, September.
    15. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    16. Nafeesa Yunus & J. Hansz & Paul Kennedy, 2012. "Dynamic Interactions Between Private and Public Real Estate Markets: Some International Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 45(4), pages 1021-1040, November.
    17. Sima Siami-Namini & Daniel Muhammad & Fahad Fahimullah, 2018. "The Short and Long Run Effects of Selected Variables on Tax Revenue - A Case Study," Applied Economics and Finance, Redfame publishing, vol. 5(5), pages 23-32, September.
    18. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    19. Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Jim-Min Lin & Yen-Lin Chen, 2022. "A Correlation-Embedded Attention Module to Mitigate Multicollinearity: An Algorithmic Trading Application," Mathematics, MDPI, vol. 10(8), pages 1-13, April.
    20. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.04171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.