IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp738-748.html
   My bibliography  Save this article

Impact of duration and missing data on the long-term photovoltaic degradation rate estimation

Author

Listed:
  • Romero-Fiances, Irene
  • Livera, Andreas
  • Theristis, Marios
  • Makrides, George
  • Stein, Joshua S.
  • Nofuentes, Gustavo
  • de la Casa, Juan
  • Georghiou, George E.

Abstract

Accurate quantification of photovoltaic (PV) system degradation rate (RD) is essential for lifetime yield predictions. Although RD is a critical parameter, its estimation lacks a standardized methodology that can be applied on outdoor field data. The purpose of this paper is to investigate the impact of time period duration and missing data on RD by analyzing the performance of different techniques applied to synthetic PV system data at different linear RD patterns and known noise conditions. The analysis includes the application of different techniques to a 10-year synthetic dataset of a crystalline Silicon PV system, with emulated degradation levels and imputed missing data. The analysis demonstrated that the accuracy of ordinary least squares (OLS), year-on-year (YOY), autoregressive integrated moving average (ARIMA) and robust principal component analysis (RPCA) techniques is affected by the evaluation duration with all techniques converging to lower RD deviations over the 10-year evaluation, apart from RPCA at high degradation levels. Moreover, the estimated RD is strongly affected by the amount of missing data. Filtering out the corrupted data yielded more accurate RD results for all techniques. It is proven that the application of a change-point detection stage is necessary and guidelines for accurate RD estimation are provided.

Suggested Citation

  • Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:738-748
    DOI: 10.1016/j.renene.2021.09.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101404X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Limmanee, Amornrat & Udomdachanut, Nuttakarn & Songtrai, Sasiwimon & Kaewniyompanit, Songpakit & Sato, Yukinobu & Nakaishi, Masaki & Kittisontirak, Songkiate & Sriprapha, Kobsak & Sakamoto, Yukitaka, 2016. "Field performance and degradation rates of different types of photovoltaic modules: A case study in Thailand," Renewable Energy, Elsevier, vol. 89(C), pages 12-17.
    2. Sascha Lindig & Atse Louwen & David Moser & Marko Topic, 2020. "Outdoor PV System Monitoring—Input Data Quality, Data Imputation and Filtering Approaches," Energies, MDPI, vol. 13(19), pages 1-18, September.
    3. Alexander Frick & George Makrides & Markus Schubert & Matthias Schlecht & George E. Georghiou, 2020. "Degradation Rate Location Dependency of Photovoltaic Systems," Energies, MDPI, vol. 13(24), pages 1-20, December.
    4. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    5. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernández, Eduardo F., 2020. "Photovoltaic cleaning frequency optimization under different degradation rate patterns," Renewable Energy, Elsevier, vol. 166(C), pages 136-146.
    6. Quansah, David A. & Adaramola, Muyiwa S., 2019. "Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression," Renewable Energy, Elsevier, vol. 131(C), pages 900-910.
    7. Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.
    8. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernandez, Eduardo F., 2020. "Photovoltaic Cleaning Frequency Optimization Under Different Degradation Rate Patterns," MPRA Paper 105008, University Library of Munich, Germany, revised 07 Oct 2020.
    9. Ozden, Talat & Akinoglu, Bulent G. & Turan, Rasit, 2017. "Long term outdoor performances of three different on-grid PV arrays in central Anatolia – An extended analysis," Renewable Energy, Elsevier, vol. 101(C), pages 182-195.
    10. Phinikarides, Alexander & Makrides, George & Zinsser, Bastian & Schubert, Markus & Georghiou, George E., 2015. "Analysis of photovoltaic system performance time series: Seasonality and performance loss," Renewable Energy, Elsevier, vol. 77(C), pages 51-63.
    11. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    12. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Or Gindi & Zeev Fradkin & Anat Itzhak & Peter Beker, 2023. "Lowering the Temperature and Increasing the Fill Factor of Silicon Solar Cells by Filtering of Sub-Bandgap Wavelengths," Energies, MDPI, vol. 16(15), pages 1-15, July.
    2. Karttunen, Lauri & Jouttijärvi, Sami & Poskela, Aapo & Palonen, Heikki & Huerta, Hugo & Todorović, Milica & Ranta, Samuli & Miettunen, Kati, 2023. "Comparing methods for the long-term performance assessment of bifacial photovoltaic modules in Nordic conditions," Renewable Energy, Elsevier, vol. 219(P1).
    3. Andreas Livera & Georgios Tziolis & Marios Theristis & Joshua S. Stein & George E. Georghiou, 2023. "Estimating the Performance Loss Rate of Photovoltaic Systems Using Time Series Change Point Analysis," Energies, MDPI, vol. 16(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    2. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2022. "Ageing and seasonal effects on amorphous silicon photovoltaic modules in a Mediterranean climate," Renewable Energy, Elsevier, vol. 186(C), pages 74-88.
    3. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    4. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    5. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.
    6. Limmanee, Amornrat & Songtrai, Sasiwimon & Udomdachanut, Nuttakarn & Kaewniyompanit, Songpakit & Sato, Yukinobu & Nakaishi, Masaki & Kittisontirak, Songkiate & Sriprapha, Kobsak & Sakamoto, Yukitaka, 2017. "Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on LCOE," Renewable Energy, Elsevier, vol. 102(PA), pages 199-204.
    7. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    8. Alexander Frick & George Makrides & Markus Schubert & Matthias Schlecht & George E. Georghiou, 2020. "Degradation Rate Location Dependency of Photovoltaic Systems," Energies, MDPI, vol. 13(24), pages 1-20, December.
    9. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Nofuentes, Gustavo & Stein, Joshua S. & Almonacid, Florencia & Fernández, Eduardo F., 2022. "The economic value of photovoltaic performance loss mitigation in electricity spot markets," Renewable Energy, Elsevier, vol. 199(C), pages 486-497.
    10. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    11. Dušan Kudelas & Marcela Taušová & Peter Tauš & Ľubomíra Gabániová & Ján Koščo, 2019. "Investigation of Operating Parameters and Degradation of Photovoltaic Panels in a Photovoltaic Power Plant," Energies, MDPI, vol. 12(19), pages 1-15, September.
    12. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    13. Assoa, Ya Brigitte & Valencia-Caballero, Daniel & Rico, Elena & Del Caño, Teodosio & Furtado, Joao Victor, 2023. "Performance of a large size photovoltaic module for façade integration," Renewable Energy, Elsevier, vol. 211(C), pages 903-917.
    14. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.
    15. Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.
    16. Karttunen, Lauri & Jouttijärvi, Sami & Poskela, Aapo & Palonen, Heikki & Huerta, Hugo & Todorović, Milica & Ranta, Samuli & Miettunen, Kati, 2023. "Comparing methods for the long-term performance assessment of bifacial photovoltaic modules in Nordic conditions," Renewable Energy, Elsevier, vol. 219(P1).
    17. Dag, H.I. & Buker, M.S., 2020. "Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions," Renewable Energy, Elsevier, vol. 156(C), pages 1292-1300.
    18. Fadhil Y. Al-Aboosi & Abdullah F. Al-Aboosi, 2021. "Preliminary Evaluation of a Rooftop Grid-Connected Photovoltaic System Installation under the Climatic Conditions of Texas (USA)," Energies, MDPI, vol. 14(3), pages 1-30, January.
    19. Silvestre, Santiago & Tahri, Ali & Tahri, Fatima & Benlebna, Soumiya & Chouder, Aissa, 2018. "Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 152(C), pages 57-63.
    20. Hasan Masrur & Keifa Vamba Konneh & Mikaeel Ahmadi & Kaisar R. Khan & Mohammad Lutfi Othman & Tomonobu Senjyu, 2021. "Assessing the Techno-Economic Impact of Derating Factors on Optimally Tilted Grid-Tied Photovoltaic Systems," Energies, MDPI, vol. 14(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:738-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.