IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.02262.html
   My bibliography  Save this paper

Cointegrating Polynomial Regressions with Power Law Trends: Environmental Kuznets Curve or Omitted Time Effects?

Author

Listed:
  • Yicong Lin
  • Hanno Reuvers

Abstract

The environmental Kuznets curve predicts an inverted U-shaped relationship between environmental pollution and economic growth. Current analyses frequently employ models which restrict nonlinearities in the data to be explained by the economic growth variable only. We propose a Generalized Cointegrating Polynomial Regression (GCPR) to allow for an alternative source of nonlinearity. More specifically, the GCPR is a seemingly unrelated regression with (1) integer powers of deterministic and stochastic trends for the individual units, and (2) a common flexible global trend. We estimate this GCPR by nonlinear least squares and derive its asymptotic distribution. Endogeneity of the regressors will introduce nuisance parameters into the limiting distribution but a simulation-based approach nevertheless enables us to conduct valid inference. A multivariate subsampling KPSS test is proposed to verify the correct specification of the cointegrating relation. Our simulation study shows good performance of the simulated inference approach and subsampling KPSS test. We illustrate the GCPR approach using data for Austria, Belgium, Finland, the Netherlands, Switzerland, and the UK. A single global trend accurately captures all nonlinearities leading to a linear cointegrating relation between GDP and CO2 for all countries. This suggests that the environmental improvement of the last years is due to economic factors different from GDP.

Suggested Citation

  • Yicong Lin & Hanno Reuvers, 2020. "Cointegrating Polynomial Regressions with Power Law Trends: Environmental Kuznets Curve or Omitted Time Effects?," Papers 2009.02262, arXiv.org, revised Dec 2021.
  • Handle: RePEc:arx:papers:2009.02262
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.02262
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    2. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    3. Romano, Joseph P & Wolf, Michael, 2001. "Subsampling Intervals in Autoregressive Models with Linear Time Trend," Econometrica, Econometric Society, vol. 69(5), pages 1283-1314, September.
    4. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    5. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    6. Jin Seo Cho & Peter C. B. Phillips, 2018. "Sequentially testing polynomial model hypotheses using power transforms of regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 141-159, January.
    7. Stypka, Oliver & Wagner, Martin & Grabarczyk, Peter & Kawka, Rafael, 2017. "The Asymptotic Validity of "Standard" Fully Modified OLS Estimation and Inference in Cointegrating Polynomial Regressions," Economics Series 333, Institute for Advanced Studies.
    8. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    9. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    10. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    11. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.
    12. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Estimating deterministic trends with an integrated or stationary noise component," Journal of Econometrics, Elsevier, vol. 151(1), pages 56-69, July.
    13. Wagner, Martin & Grabarczyk, Peter & Hong, Seung Hyun, 2020. "Fully modified OLS estimation and inference for seemingly unrelated cointegrating polynomial regressions and the environmental Kuznets curve for carbon dioxide emissions," Journal of Econometrics, Elsevier, vol. 214(1), pages 216-255.
    14. Piaggio, Matías & Padilla, Emilio, 2012. "CO2 emissions and economic activity: Heterogeneity across countries and non-stationary series," Energy Policy, Elsevier, vol. 46(C), pages 370-381.
    15. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    16. Dufour, Jean-Marie & Khalaf, Lynda, 2002. "Simulation based finite and large sample tests in multivariate regressions," Journal of Econometrics, Elsevier, vol. 111(2), pages 303-322, December.
    17. Phillips, Peter C.B., 2007. "Regression With Slowly Varying Regressors And Nonlinear Trends," Econometric Theory, Cambridge University Press, vol. 23(4), pages 557-614, August.
    18. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    19. Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001. "Nonlinear econometric models with cointegrated and deterministically trending regressors," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
    20. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    21. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    22. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    23. Susmita Dasgupta & Benoit Laplante & Hua Wang & David Wheeler, 2002. "Confronting the Environmental Kuznets Curve," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 147-168, Winter.
    24. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    25. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    26. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    27. Bergamelli, Michele & Bianchi, Annamaria & Khalaf, Lynda & Urga, Giovanni, 2019. "Combining p-values to test for multiple structural breaks in cointegrated regressions," Journal of Econometrics, Elsevier, vol. 211(2), pages 461-482.
    28. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    29. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    30. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    31. Hu, Zhishui & Phillips, Peter C.B. & Wang, Qiying, 2021. "Nonlinear Cointegrating Power Function Regression With Endogeneity," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1173-1213, December.
    32. Martin Wagner, 2015. "The Environmental Kuznets Curve, Cointegration and Nonlinearity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(6), pages 948-967, September.
    33. Yicong Lin & Hanno Reuvers, 2019. "Efficient Estimation by Fully Modified GLS with an Application to the Environmental Kuznets Curve," Papers 1908.02552, arXiv.org, revised Aug 2020.
    34. Wang, Qiying & Phillips, Peter C. B., 2016. "Nonparametric Cointegrating Regression With Endogeneity And Long Memory," Econometric Theory, Cambridge University Press, vol. 32(2), pages 359-401, April.
    35. Wagner, Martin & Hong, Seung Hyun, 2016. "Cointegrating Polynomial Regressions: Fully Modified Ols Estimation And Inference," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1289-1315, October.
    36. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1449-1459, December.
    37. Choi, In & Saikkonen, Pentti, 2010. "Tests For Nonlinear Cointegration," Econometric Theory, Cambridge University Press, vol. 26(3), pages 682-709, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yicong Lin & Hanno Reuvers, 2019. "Efficient Estimation by Fully Modified GLS with an Application to the Environmental Kuznets Curve," Papers 1908.02552, arXiv.org, revised Aug 2020.
    2. Stypka, Oliver & Wagner, Martin & Grabarczyk, Peter & Kawka, Rafael, 2017. "The Asymptotic Validity of "Standard" Fully Modified OLS Estimation and Inference in Cointegrating Polynomial Regressions," Economics Series 333, Institute for Advanced Studies.
    3. Hu, Zhishui & Phillips, Peter C.B. & Wang, Qiying, 2021. "Nonlinear Cointegrating Power Function Regression With Endogeneity," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1173-1213, December.
    4. Martin Wagner, 2023. "Residual-based cointegration and non-cointegration tests for cointegrating polynomial regressions," Empirical Economics, Springer, vol. 65(1), pages 1-31, July.
    5. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    6. Romero-Avila, Diego, 2008. "Questioning the empirical basis of the environmental Kuznets curve for CO2: New evidence from a panel stationarity test robust to multiple breaks and cross-dependence," Ecological Economics, Elsevier, vol. 64(3), pages 559-574, January.
    7. de Mello Luiz & Moccero Diego & Mogliani Matteo, 2013. "Do Latin American Central Bankers Behave Non-Linearly? The Experiences of Brazil, Chile, Colombia and Mexico," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 141-165, April.
    8. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
    9. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    10. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    11. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 923-941, October.
    12. Youngsoo Bae & Robert M. de Jong, 2007. "Money demand function estimation by nonlinear cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 767-793.
    13. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    14. Muller-Furstenberger, Georg & Wagner, Martin, 2007. "Exploring the environmental Kuznets hypothesis: Theoretical and econometric problems," Ecological Economics, Elsevier, vol. 62(3-4), pages 648-660, May.
    15. Wagner, Martin, 2008. "The carbon Kuznets curve: A cloudy picture emitted by bad econometrics?," Resource and Energy Economics, Elsevier, vol. 30(3), pages 388-408, August.
    16. Chuku, Agbai, 2011. "Economic development and environmental quality in Nigeria: is there an environmental Kuznets curve?," MPRA Paper 30195, University Library of Munich, Germany.
    17. Tu, Yundong & Wang, Ying, 2022. "Spurious functional-coefficient regression models and robust inference with marginal integration," Journal of Econometrics, Elsevier, vol. 229(2), pages 396-421.
    18. Auci, Sabrina & Becchetti, Leonardo, 2006. "The instability of the adjusted and unadjusted environmental Kuznets curves," Ecological Economics, Elsevier, vol. 60(1), pages 282-298, November.
    19. Daniel Fiorino, 2011. "Explaining national environmental performance: approaches, evidence, and implications," Policy Sciences, Springer;Society of Policy Sciences, vol. 44(4), pages 367-389, November.
    20. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.02262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.