IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.00360.html
   My bibliography  Save this paper

Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing

Author

Listed:
  • Will Hicks

Abstract

Financial models based on the Wick product, and White Noise formalism have previously been suggested in order to incorporate integrals with respect to fractional Brownian motion. It has also been pointed out that this leads naturally to a quantum mechanical interpretation of the financial market. In this article we pursue this idea further, and in particular show how the framework of quantum probability can be used to construct Martingales, without relying on Brownian integrals. We go on to suggest benefits of doing so, and avenues for future work.

Suggested Citation

  • Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
  • Handle: RePEc:arx:papers:2009.00360
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.00360
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Will Hicks, 2018. "PT Symmetry, Non-Gaussian Path Integrals, and the Quantum Black-Scholes Equation," Papers 1812.00839, arXiv.org, revised Jan 2019.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    4. Haven, Emmanuel, 2003. "A Black-Scholes Schrödinger option price: ‘bit’ versus ‘qubit’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 201-206.
    5. Will Hicks, 2019. "A Nonlocal Approach to The Quantum Kolmogorov Backward Equation and Links to Noncommutative Geometry," Papers 1905.07257, arXiv.org.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Will Hicks, 2018. "Nonlocal Diffusions and The Quantum Black-Scholes Equation: Modelling the Market Fear Factor," Papers 1806.07983, arXiv.org, revised Jun 2018.
    8. Will Hicks, 2019. "Closed Quantum Black-Scholes: Quantum Drift and the Heisenberg Equation of Motion," Papers 1911.11475, arXiv.org, revised Jan 2020.
    9. Jana, T.K. & Roy, P., 2012. "Pseudo Hermitian formulation of the quantum Black–Scholes Hamiltonian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2636-2640.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Will Hicks, 2023. "Modelling Illiquid Stocks Using Quantum Stochastic Calculus," Papers 2302.05243, arXiv.org.
    2. Will Hicks, 2019. "Closed Quantum Black-Scholes: Quantum Drift and the Heisenberg Equation of Motion," Papers 1911.11475, arXiv.org, revised Jan 2020.
    3. Anantya Bhatnagar & Dimitri D. Vvedensky, 2022. "Quantum effects in an expanded Black–Scholes model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-12, August.
    4. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017. "Dynamic optimization and its relation to classical and quantum constrained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
    5. Rotundo, Giulia, 2014. "Black–Scholes–Schrödinger–Zipf–Mandelbrot model framework for improving a study of the coauthor core score," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 296-301.
    6. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    7. Andr'es Sosa & Ernesto Mordecki, 2015. "Modelling the Uruguayan debt through gaussians models," Papers 1508.00108, arXiv.org.
    8. Reaz Chowdhury & M. R. C. Mahdy & Tanisha Nourin Alam & Golam Dastegir Al Quaderi, 2018. "Predicting the Stock Price of Frontier Markets Using Modified Black-Scholes Option Pricing Model and Machine Learning," Papers 1812.10619, arXiv.org.
    9. G., Mauricio Contreras & Peña, Juan Pablo, 2019. "The quantum dark side of the optimal control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 450-473.
    10. Will Hicks, 2021. "Wild Randomness, and the application of Hyperbolic Diffusion in Financial Modelling," Papers 2101.04604, arXiv.org, revised Apr 2021.
    11. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    12. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    13. Lioui, Abraham, 1998. "Currency risk hedging: Futures vs. forward," Journal of Banking & Finance, Elsevier, vol. 22(1), pages 61-81, January.
    14. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    15. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    16. Tucker, A. L. & Wei, J. Z., 1998. "Valuation of LIBOR-Contingent FX options," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 249-277, April.
    17. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    18. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Eckhard Platen, 2005. "An Alternative Interest Rate Term Structure Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 717-735.
    20. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.00360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.