IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.07257.html
   My bibliography  Save this paper

A Nonlocal Approach to The Quantum Kolmogorov Backward Equation and Links to Noncommutative Geometry

Author

Listed:
  • Will Hicks

Abstract

The Accardi-Boukas quantum Black-Scholes equation can be used as an alternative to the classical approach to finance, and has been found to have a number of useful benefits. The quantum Kolmogorov backward equations, and associated quantum Fokker-Planck equations, that arise from this general framework, are derived using the Hudson-Parthasarathy quantum stochastic calculus. In this paper we show how these equations can be derived using a nonlocal approach to quantum mechanics. We show how nonlocal diffusions, and quantum stochastic processes can be linked, and discuss how moment matching can be used for deriving solutions.

Suggested Citation

  • Will Hicks, 2019. "A Nonlocal Approach to The Quantum Kolmogorov Backward Equation and Links to Noncommutative Geometry," Papers 1905.07257, arXiv.org.
  • Handle: RePEc:arx:papers:1905.07257
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.07257
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    2. Will Hicks, 2023. "Modelling Illiquid Stocks Using Quantum Stochastic Calculus," Papers 2302.05243, arXiv.org.
    3. Will Hicks, 2019. "Closed Quantum Black-Scholes: Quantum Drift and the Heisenberg Equation of Motion," Papers 1911.11475, arXiv.org, revised Jan 2020.
    4. Will Hicks, 2023. "Modelling Illiquid Stocks Using Quantum Stochastic Calculus: Asymptotic Methods," Papers 2302.05256, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.07257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.