IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i8d10.1140_epjb_s10051-022-00402-0.html
   My bibliography  Save this article

Quantum effects in an expanded Black–Scholes model

Author

Listed:
  • Anantya Bhatnagar

    (Imperial College London)

  • Dimitri D. Vvedensky

    (Imperial College London)

Abstract

The limitations of the classical Black–Scholes model are examined by comparing calculated and actual historical prices of European call options on stocks from several sectors of the S &P 500. Persistent differences between the two prices point to an expanded model proposed by Segal and Segal (PNAS 95:4072–4075, 1988) in which information not simultaneously observable or actionable with public information can be represented by an additional pseudo-Wiener process. A real linear combination of the original and added processes leads to a commutation relation analogous to that between a boson field and its canonical momentum in quantum field theory. The resulting pricing formula for a European call option replaces the classical volatility with the norm of a complex quantity, whose imaginary part is shown to compensate for the disparity between prices obtained from the classical Black–Scholes model and actual prices of the test call options. This provides market evidence for the influence of a non-classical process on the price of a security based on non-commuting operators. Graphic Abstract

Suggested Citation

  • Anantya Bhatnagar & Dimitri D. Vvedensky, 2022. "Quantum effects in an expanded Black–Scholes model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-12, August.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:8:d:10.1140_epjb_s10051-022-00402-0
    DOI: 10.1140/epjb/s10051-022-00402-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00402-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00402-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Fleming & Barbara Ostdiek & Robert E. Whaley, 1995. "Predicting stock market volatility: A new measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 265-302, May.
    2. Will Hicks, 2018. "PT Symmetry, Non-Gaussian Path Integrals, and the Quantum Black-Scholes Equation," Papers 1812.00839, arXiv.org, revised Jan 2019.
    3. Jan W Dash, 2004. "Quantitative Finance and Risk Management:A Physicist's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 5436, February.
    4. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    5. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Will Hicks, 2019. "Closed Quantum Black-Scholes: Quantum Drift and the Heisenberg Equation of Motion," Papers 1911.11475, arXiv.org, revised Jan 2020.
    8. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    9. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2006. "Pricing exotic options in a path integral approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 55-66.
    10. Choustova, Olga Al., 2007. "Quantum Bohmian model for financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 304-314.
    11. Jean-Philippe Bouchaud & Didier Sornette, 1994. "The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes," Science & Finance (CFM) working paper archive 500040, Science & Finance, Capital Fund Management.
    12. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    13. Capuozzo, Pietro & Panella, Emanuele & Schettini Gherardini, Tancredi & Vvedensky, Dimitri D., 2021. "Path integral Monte Carlo method for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    14. Duffie, Darrell, 1988. "An extension of the Black-Scholes model of security valuation," Journal of Economic Theory, Elsevier, vol. 46(1), pages 194-204, October.
    15. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    16. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    17. D. Lemmens & M. Wouters & J. Tempere & S. Foulon, 2008. "A path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models," Papers 0806.0932, arXiv.org.
    18. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    19. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2004. "Pricing Exotic Options in a Path Integral Approach," Papers cond-mat/0407321, arXiv.org, revised May 2006.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    2. Capuozzo, Pietro & Panella, Emanuele & Schettini Gherardini, Tancredi & Vvedensky, Dimitri D., 2021. "Path integral Monte Carlo method for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    4. Ma, Chao & Ma, Qinghua & Yao, Haixiang & Hou, Tiancheng, 2018. "An accurate European option pricing model under Fractional Stable Process based on Feynman Path Integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 87-117.
    5. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    6. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    7. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
    8. Reaz Chowdhury & M. R. C. Mahdy & Tanisha Nourin Alam & Golam Dastegir Al Quaderi, 2018. "Predicting the Stock Price of Frontier Markets Using Modified Black-Scholes Option Pricing Model and Machine Learning," Papers 1812.10619, arXiv.org.
    9. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    10. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    11. Giacomo Bormetti & Giorgia Callegaro & Giulia Livieri & Andrea Pallavicini, 2015. "A backward Monte Carlo approach to exotic option pricing," Papers 1511.00848, arXiv.org.
    12. Chowdhury, Reaz & Mahdy, M.R.C. & Alam, Tanisha Nourin & Al Quaderi, Golam Dastegir & Arifur Rahman, M., 2020. "Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    13. Zura Kakushadze, 2015. "Path integral and asset pricing," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1759-1771, November.
    14. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    15. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    17. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    18. Rosa Ferrentino & Luca Vota, 2022. "A Mathematical Model for the Pricing of Derivative Financial Products: the Role of the Banking Supervision and of the Model Risk," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 11(1), pages 1-2.
    19. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    20. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:8:d:10.1140_epjb_s10051-022-00402-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.