IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.00839.html
   My bibliography  Save this paper

PT Symmetry, Non-Gaussian Path Integrals, and the Quantum Black-Scholes Equation

Author

Listed:
  • Will Hicks

Abstract

The Accardi-Boukas quantum Black-Scholes framework, provides a means by which one can apply the Hudson-Parthasarathy quantum stochastic calculus to problems in finance. Solutions to these equations can be modelled using nonlocal diffusion processes, via a Kramers-Moyal expansion, and this provides useful tools to understand their behaviour. In this paper we develop further links between quantum stochastic processes, and nonlocal diffusions, by inverting the question, and showing how certain nonlocal diffusions can be written as quantum stochastic processes. We then go on to show how one can use path integral formalism, and PT symmetric quantum mechanics, to build a non-Gaussian kernel function for the Accardi-Boukas quantum Black-Scholes. Behaviours observed in the real market are a natural model output, rather than something that must be deliberately included.

Suggested Citation

  • Will Hicks, 2018. "PT Symmetry, Non-Gaussian Path Integrals, and the Quantum Black-Scholes Equation," Papers 1812.00839, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1812.00839
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.00839
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haven, Emmanuel, 2003. "A Black-Scholes Schrödinger option price: ‘bit’ versus ‘qubit’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 201-206.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Nielsen, Lars Tyge, 1999. "Pricing and Hedging of Derivative Securities," OUP Catalogue, Oxford University Press, number 9780198776192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anantya Bhatnagar & Dimitri D. Vvedensky, 2022. "Quantum effects in an expanded Black–Scholes model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-12, August.
    2. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    3. Will Hicks, 2023. "Modelling Illiquid Stocks Using Quantum Stochastic Calculus," Papers 2302.05243, arXiv.org.
    4. Will Hicks, 2019. "Closed Quantum Black-Scholes: Quantum Drift and the Heisenberg Equation of Motion," Papers 1911.11475, arXiv.org, revised Jan 2020.
    5. Din Prathumwan & Kamonchat Trachoo, 2019. "Application of the Laplace Homotopy Perturbation Method to the Black–Scholes Model Based on a European Put Option with Two Assets," Mathematics, MDPI, vol. 7(4), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    2. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    3. A. Gulisashvili & E. M. Stein, 2009. "Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models," Papers 0906.0392, arXiv.org.
    4. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    5. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    6. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    7. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    8. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    9. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    10. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    11. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    12. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    13. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    14. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    15. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    16. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    17. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    18. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    19. Ruan, Xinfeng & Zhang, Jin E., 2021. "The economics of the financial market for volatility trading," Journal of Financial Markets, Elsevier, vol. 52(C).
    20. Detlefsen, Kai & Härdle, Wolfgang Karl, 2006. "Forecasting the term structure of variance swaps," SFB 649 Discussion Papers 2006-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.00839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.