IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.09263.html
   My bibliography  Save this paper

Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs

Author

Listed:
  • Jun Ma
  • Zhengfei Yu

Abstract

This paper proposes a versatile covariate adjustment method that directly incorporates covariate balance in regression discontinuity (RD) designs. The new empirical entropy balancing method reweights the standard local polynomial RD estimator by using the entropy balancing weights that minimize the Kullback--Leibler divergence from the uniform weights while satisfying the covariate balance constraints. Our estimator can be formulated as an empirical likelihood estimator that efficiently incorporates the information from the covariate balance condition as correctly specified over-identifying moment restrictions, and thus has an asymptotic variance no larger than that of the standard estimator without covariates. We demystify the asymptotic efficiency gain of Calonico, Cattaneo, Farrell, and Titiunik (2019)'s regression-based covariate-adjusted estimator, as their estimator has the same asymptotic variance as ours. Further efficiency improvement from balancing over sieve spaces is possible if our entropy balancing weights are computed using stronger covariate balance constraints that are imposed on functions of covariates. We then show that our method enjoys favorable second-order properties from empirical likelihood estimation and inference: the estimator has a small (bounded) nonlinearity bias, and the likelihood ratio based confidence set admits a simple analytical correction that can be used to improve coverage accuracy. The coverage accuracy of our confidence set is robust against slight perturbation to the covariate balance condition, which may happen in cases such as data contamination and misspecified "unaffected" outcomes used as covariates. The proposed entropy balancing approach for covariate adjustment is applicable to other RD-related settings.

Suggested Citation

  • Jun Ma & Zhengfei Yu, 2020. "Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs," Papers 2008.09263, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2008.09263
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.09263
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.
    2. Yoichi Arai & Hidehiko Ichimura, 2018. "Simultaneous selection of optimal bandwidths for the sharp regression discontinuity estimator," Quantitative Economics, Econometric Society, vol. 9(1), pages 441-482, March.
    3. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Levine's Bibliography 321307000000000307, UCLA Department of Economics.
    4. Arai, Yoichi & Ichimura, Hidehiko, 2016. "Optimal bandwidth selection for the fuzzy regression discontinuity estimator," Economics Letters, Elsevier, vol. 141(C), pages 103-106.
    5. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    6. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    7. Timothy B Armstrong & Michal Kolesár, 2018. "A Simple Adjustment for Bandwidth Snooping," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 732-765.
    8. Markus Frölich & Martin Huber, 2019. "Including Covariates in the Regression Discontinuity Design," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 736-748, October.
    9. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Rocío Titiunik, 2019. "Regression Discontinuity Designs Using Covariates," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 442-451, July.
    10. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    11. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    12. Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2020. "Simple Local Polynomial Density Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1449-1455, July.
    13. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    14. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    15. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    16. Sebastian Calonico & Matias D Cattaneo & Max H Farrell, 2020. "Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 192-210.
    17. Yingying Dong, 2018. "Alternative Assumptions to Identify LATE in Fuzzy Regression Discontinuity Designs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(5), pages 1020-1027, October.
    18. Donna Feir & Thomas Lemieux & Vadim Marmer, 2016. "Weak Identification in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-196, April.
    19. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    20. Hugo Jales & Zhengfei Yu, 2017. "Identification and Estimation Using a Density Discontinuity Approach," Advances in Econometrics, in: Regression Discontinuity Designs, volume 38, pages 29-72, Emerald Group Publishing Limited.
    21. Xu, Ke-Li, 2017. "Regression discontinuity with categorical outcomes," Journal of Econometrics, Elsevier, vol. 201(1), pages 1-18.
    22. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    23. Taisuke Otsu & Ke-Li Xu & Yukitoshi Matsushita, 2013. "Estimation and Inference of Discontinuity in Density," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 507-524, October.
    24. Andrew C. Eggers & Anthony Fowler & Jens Hainmueller & Andrew B. Hall & James M. Snyder, 2015. "On the Validity of the Regression Discontinuity Design for Estimating Electoral Effects: New Evidence from Over 40,000 Close Races," American Journal of Political Science, John Wiley & Sons, vol. 59(1), pages 259-274, January.
    25. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    26. Matias Cattaneo & Sebastian Calonico & Rocio Titiunik, 2015. "Robust Inference in Regression-Discontinuity Designs," 2015 Stata Conference 16, Stata Users Group.
    27. Jason M. Lindo & Nicholas J. Sanders & Philip Oreopoulos, 2010. "Ability, Gender, and Performance Standards: Evidence from Academic Probation," American Economic Journal: Applied Economics, American Economic Association, vol. 2(2), pages 95-117, April.
    28. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    29. Matsushita, Yukitoshi & Otsu, Taisuke, 2013. "Second-Order Refinement Of Empirical Likelihood For Testing Overidentifying Restrictions," Econometric Theory, Cambridge University Press, vol. 29(2), pages 324-353, April.
    30. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Cowles Foundation Discussion Papers 1569, Cowles Foundation for Research in Economics, Yale University.
    31. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    32. Jun Ma & Hugo Jales & Zhengfei Yu, 2020. "Minimum Contrast Empirical Likelihood Inference of Discontinuity in Density," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 934-950, October.
    33. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    34. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    35. Jun Ma, 2017. "Second‐order refinement of empirical likelihood ratio tests of nonlinear restrictions," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 139-148, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    2. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    3. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    4. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    5. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    6. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    7. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    8. Xu, Ke-Li, 2017. "Regression discontinuity with categorical outcomes," Journal of Econometrics, Elsevier, vol. 201(1), pages 1-18.
    9. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    10. Xu, Ke-Li, 2018. "A semi-nonparametric estimator of regression discontinuity design with discrete duration outcomes," Journal of Econometrics, Elsevier, vol. 206(1), pages 258-278.
    11. Hsu, Yu-Chin & Shiu, Ji-Liang & Wan, Yuanyuan, 2024. "Testing identification conditions of LATE in fuzzy regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 241(1).
    12. Kettlewell, Nathan & Siminski, Peter, 2020. "Optimal Model Selection in RDD and Related Settings Using Placebo Zones," IZA Discussion Papers 13639, Institute of Labor Economics (IZA).
    13. 'Agoston Reguly, 2021. "Heterogeneous Treatment Effects in Regression Discontinuity Designs," Papers 2106.11640, arXiv.org, revised Oct 2021.
    14. Burgherr, David, 2022. "Behavioral Responses to a Pension Savings Mandate : Quasi-experimental Evidence from Swiss Tax Data," CAGE Online Working Paper Series 645, Competitive Advantage in the Global Economy (CAGE).
    15. Adam C. Sales & Ben B. Hansen, 2020. "Limitless Regression Discontinuity," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 143-174, April.
    16. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    17. Naven, Matthew & Whalen, Daniel, 2022. "The signaling value of university rankings: Evidence from top 14 law schools," Economics of Education Review, Elsevier, vol. 89(C).
    18. Likai Chen & Georg Keilbar & Liangjun Su & Weining Wang, 2023. "Inference on many jumps in nonparametric panel regression models," Papers 2312.01162, arXiv.org, revised Aug 2024.
    19. Makkar, Karan, 2023. "Defector Politicians and Economic Growth: Evidence from India," European Journal of Political Economy, Elsevier, vol. 79(C).
    20. Xiao Huang & Zhaoguo Zhan, 2022. "Local Composite Quantile Regression for Regression Discontinuity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1863-1875, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.09263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.