IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v38y2020i4p934-950.html
   My bibliography  Save this article

Minimum Contrast Empirical Likelihood Inference of Discontinuity in Density

Author

Listed:
  • Jun Ma
  • Hugo Jales
  • Zhengfei Yu

Abstract

This article investigates the asymptotic properties of a simple empirical-likelihood-based inference method for discontinuity in density. The parameter of interest is a function of two one-sided limits of the probability density function at (possibly) two cut-off points. Our approach is based on the first-order conditions from a minimum contrast problem. We investigate both first-order and second-order properties of the proposed method. We characterize the leading coverage error of our inference method and propose a coverage-error-optimal (CE-optimal, hereafter) bandwidth selector. We show that the empirical likelihood ratio statistic is Bartlett correctable. An important special case is the manipulation testing problem in a regression discontinuity design (RDD), where the parameter of interest is the density difference at a known threshold. In RDD, the continuity of the density of the assignment variable at the threshold is considered as a “no-manipulation” behavioral assumption, which is a testable implication of an identifying condition for the local average treatment effect. When specialized to the manipulation testing problem, the CE-optimal bandwidth selector has an explicit form. We propose a data-driven CE-optimal bandwidth selector for use in practice. Results from Monte Carlo simulations are presented. Usefulness of our method is illustrated by an empirical example.

Suggested Citation

  • Jun Ma & Hugo Jales & Zhengfei Yu, 2020. "Minimum Contrast Empirical Likelihood Inference of Discontinuity in Density," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 934-950, October.
  • Handle: RePEc:taf:jnlbes:v:38:y:2020:i:4:p:934-950
    DOI: 10.1080/07350015.2019.1617155
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2019.1617155
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2019.1617155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    2. Jun Ma & Vadim Marmer & Artyom Shneyerov & Pai Xu, 2021. "Monotonicity-constrained nonparametric estimation and inference for first-price auctions," Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 944-982, November.
    3. Fitzgerald, Jack, 2024. "Manipulation Tests in Regression Discontinuity Design: The Need for Equivalence Testing," I4R Discussion Paper Series 136, The Institute for Replication (I4R).
    4. Jun Ma & Zhengfei Yu, 2020. "Empirical Likelihood Covariate Adjustment for Regression Discontinuity Designs," Papers 2008.09263, arXiv.org, revised May 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:38:y:2020:i:4:p:934-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.