IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.00925.html
   My bibliography  Save this paper

Multigrid Iterative Algorithm based on Compact Finite Difference Schemes and Hermite interpolation for Solving Regime Switching American Options

Author

Listed:
  • Chinonso Nwankwo
  • Weizhong Dai

Abstract

We present a multigrid iterative algorithm for solving a system of coupled free boundary problems for pricing American put options with regime-switching. The algorithm is based on our recently developed compact finite difference scheme coupled with Hermite interpolation for solving the coupled partial differential equations consisting of the asset option and the delta, gamma, and speed sensitivities. In the algorithm, we first use the Gauss-Seidel method as a smoother and then implement a multigrid strategy based on modified cycle (M-cycle) for solving our discretized equations. Hermite interpolation with Newton interpolatory divided difference (as the basis) is used in estimating the coupled asset, delta, gamma, and speed options in the set of equations. A numerical experiment is performed with the two- and four- regime examples and compared with other existing methods to validate the optimal strategy. Results show that this algorithm provides a fast and efficient tool for pricing American put options with regime-switching.

Suggested Citation

  • Chinonso Nwankwo & Weizhong Dai, 2020. "Multigrid Iterative Algorithm based on Compact Finite Difference Schemes and Hermite interpolation for Solving Regime Switching American Options," Papers 2008.00925, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2008.00925
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.00925
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. H. Liu, 2010. "Regime-Switching Recombining Tree For Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 479-499.
    2. A. Q. M. Khaliq & R. H. Liu, 2009. "New Numerical Scheme For Pricing American Option With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 319-340.
    3. Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
    4. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Yan, Yun & Dai, Weizhong & Wu, Longyuan & Zhai, Shuying, 2019. "Accurate gradient preserved method for solving heat conduction equations in double layers," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 58-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinonso I. Nwankwo & Weizhong Dai & Ruihua Liu, 2023. "Compact Finite Difference Scheme with Hermite Interpolation for Pricing American Put Options Based on Regime Switching Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 817-854, October.
    2. Chinonso I. Nwankwo & Weizhong Dai, 2024. "Efficient adaptive strategies with fourth-order compact scheme for a fixed-free boundary regime-switching model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 43-82, June.
    3. Chinonso Nwankwo & Weizhong Dai & Ruihua Liu, 2019. "Compact Finite Difference Scheme with Hermite Interpolation for Pricing American Put Options Based on Regime Switching Model," Papers 1908.04900, arXiv.org, revised Jun 2020.
    4. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Vicky Henderson & Kamil Klad'ivko & Michael Monoyios & Christoph Reisinger, 2017. "Executive stock option exercise with full and partial information on a drift change point," Papers 1709.10141, arXiv.org, revised Jul 2020.
    6. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Emilio Russo, 2020. "A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model," Risks, MDPI, vol. 8(1), pages 1-22, January.
    8. Jang, Bong-Gyu & Tae, Hyeon-Wuk, 2018. "Option pricing under regime switching: Integration over simplexes method," Finance Research Letters, Elsevier, vol. 24(C), pages 301-312.
    9. Chinonso Nwankwo & Weizhong Dai, 2020. "Explicit RKF-Compact Scheme for Pricing Regime Switching American Options with Varying Time Step," Papers 2012.09820, arXiv.org, revised Feb 2022.
    10. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    11. Jiao Li, 2016. "Trading VIX Futures under Mean Reversion with Regime Switching," Papers 1605.07945, arXiv.org, revised Jun 2016.
    12. Jiao Li, 2016. "Trading VIX futures under mean reversion with regime switching," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-20, September.
    13. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    14. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    15. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    16. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    17. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    18. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
    19. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    20. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.00925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.