IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.06895.html
   My bibliography  Save this paper

Discrete-time weak approximation of a Black-Scholes model with drift and volatility Markov switching

Author

Listed:
  • Vitaliy Golomoziy
  • Kamil Kladivko
  • Yuliya Mishura

Abstract

We consider a continuous-time financial market with an asset whose price is modeled by a linear stochastic differential equation with drift and volatility switching driven by a uniformly ergodic jump Markov process with a countable state space (in fact, this is a Black-Scholes model with Markov switching). We construct a multiplicative scheme of series of discrete-time markets with discrete-time Markov switching. First, we establish that the discrete-time switching Markov chains weakly converge to the limit continuous-time Markov process. Second, having this in hand, we apply conditioning on Markov chains and prove that the discrete-time market models themselves weakly converge to the Black-Scholes model with Markov switching. The convergence is proved under very general assumptions both on the discrete-time net profits and on a generator of a continuous-time Markov switching process.

Suggested Citation

  • Vitaliy Golomoziy & Kamil Kladivko & Yuliya Mishura, 2025. "Discrete-time weak approximation of a Black-Scholes model with drift and volatility Markov switching," Papers 2501.06895, arXiv.org.
  • Handle: RePEc:arx:papers:2501.06895
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.06895
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. H. Liu, 2010. "Regime-Switching Recombining Tree For Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 479-499.
    2. A. Q. M. Khaliq & R. H. Liu, 2009. "New Numerical Scheme For Pricing American Option With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 319-340.
    3. Boyle, Phelim & Draviam, Thangaraj, 2007. "Pricing exotic options under regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 267-282, March.
    4. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    5. X. Guo, 2001. "Information and option pricings," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 38-44.
    6. Donald Aingworth & Sanjiv Das & Rajeev Motwani, 2006. "A simple approach for pricing equity options with Markov switching state variables," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 95-105.
    7. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Russo, 2020. "A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model," Risks, MDPI, vol. 8(1), pages 1-22, January.
    2. Jang, Bong-Gyu & Tae, Hyeon-Wuk, 2018. "Option pricing under regime switching: Integration over simplexes method," Finance Research Letters, Elsevier, vol. 24(C), pages 301-312.
    3. Massimo Costabile & Arturo Leccadito & Ivar Massabó & Emilio Russo, 2014. "A reduced lattice model for option pricing under regime-switching," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 667-690, May.
    4. Godin, Frédéric & Lai, Van Son & Trottier, Denis-Alexandre, 2019. "Option pricing under regime-switching models: Novel approaches removing path-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 130-142.
    5. Chinonso I. Nwankwo & Weizhong Dai & Ruihua Liu, 2023. "Compact Finite Difference Scheme with Hermite Interpolation for Pricing American Put Options Based on Regime Switching Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 817-854, October.
    6. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    7. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    8. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Anindya Goswami & Kuldip Singh Patel, 2024. "Estimation of domain truncation error for a system of PDEs arising in option pricing," Papers 2401.15570, arXiv.org.
    10. Lu, Xiaoping & Putri, Endah R.M., 2020. "A semi-analytic valuation of American options under a two-state regime-switching economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    11. Vicky Henderson & Kamil Klad'ivko & Michael Monoyios & Christoph Reisinger, 2017. "Executive stock option exercise with full and partial information on a drift change point," Papers 1709.10141, arXiv.org, revised Jul 2020.
    12. Sakkas, E. & Le, H., 2009. "A Markov-modulated model for stocks paying discrete dividends," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 19-24, August.
    13. Qinjing Qiu & Reiichiro Kawai, 2023. "Iterative Weak Approximation and Hard Bounds for Switching Diffusion," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1003-1036, June.
    14. Shen, Yang & Siu, Tak Kuen, 2013. "Stochastic differential game, Esscher transform and general equilibrium under a Markovian regime-switching Lévy model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 757-768.
    15. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing lookback options with regime switching," Papers 1407.4864, arXiv.org.
    16. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    17. Jiao Li, 2016. "Trading VIX Futures under Mean Reversion with Regime Switching," Papers 1605.07945, arXiv.org, revised Jun 2016.
    18. Mengzhe Zhang & Leunglung Chan, 2016. "Saddlepoint approximations to option price in a regime-switching model," Annals of Finance, Springer, vol. 12(1), pages 55-69, February.
    19. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    20. Mengzhe Zhang & Leunglung Chan, 2016. "Pricing volatility swaps in the Heston’s stochastic volatility model with regime switching: A saddlepoint approximation method," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.06895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.