IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.07207.html
   My bibliography  Save this paper

Applying Dynamic Training-Subset Selection Methods Using Genetic Programming for Forecasting Implied Volatility

Author

Listed:
  • Sana Ben Hamida
  • Wafa Abdelmalek
  • Fathi Abid

Abstract

Volatility is a key variable in option pricing, trading and hedging strategies. The purpose of this paper is to improve the accuracy of forecasting implied volatility using an extension of genetic programming (GP) by means of dynamic training-subset selection methods. These methods manipulate the training data in order to improve the out of sample patterns fitting. When applied with the static subset selection method using a single training data sample, GP could generate forecasting models which are not adapted to some out of sample fitness cases. In order to improve the predictive accuracy of generated GP patterns, dynamic subset selection methods are introduced to the GP algorithm allowing a regular change of the training sample during evolution. Four dynamic training-subset selection methods are proposed based on random, sequential or adaptive subset selection. The latest approach uses an adaptive subset weight measuring the sample difficulty according to the fitness cases errors. Using real data from SP500 index options, these techniques are compared to the static subset selection method. Based on MSE total and percentage of non fitted observations, results show that the dynamic approach improves the forecasting performance of the generated GP models, specially those obtained from the adaptive random training subset selection method applied to the whole set of training samples.

Suggested Citation

  • Sana Ben Hamida & Wafa Abdelmalek & Fathi Abid, 2020. "Applying Dynamic Training-Subset Selection Methods Using Genetic Programming for Forecasting Implied Volatility," Papers 2007.07207, arXiv.org.
  • Handle: RePEc:arx:papers:2007.07207
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.07207
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles J. Corrado & Thomas W. Miller, Jr., 2005. "The forecast quality of CBOE implied volatility indexes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(4), pages 339-373, April.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    6. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    7. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    8. Harvey, Campbell R & Whaley, Robert E, 1991. "S&P 100 Index Option Volatility," Journal of Finance, American Finance Association, vol. 46(4), pages 1251-1261, September.
    9. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    10. Chiras, Donald P. & Manaster, Steven, 1978. "The information content of option prices and a test of market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 213-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imlak Shaikh & Puja Padhi, 2013. "On the Linkages among Ex-ante and Ex-post Volatility: Evidence from NSE Options Market (India)," Global Business Review, International Management Institute, vol. 14(3), pages 487-505, September.
    2. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    3. Guan Wang & Pierre Yourougou & Yue Wang, 2012. "Which implied volatility provides the best measure of future volatility?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 36(1), pages 93-105, January.
    4. Huang, Yu Chuan & Chen, Shing Chun, 2002. "Warrants pricing: Stochastic volatility vs. Black-Scholes," Pacific-Basin Finance Journal, Elsevier, vol. 10(4), pages 393-409, September.
    5. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    6. Puja Padhi & Imlak Shaikh, 2014. "On the relationship of implied, realized and historical volatility: evidence from NSE equity index options," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(5), pages 915-934, November.
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    9. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    10. Steven Li & Qianqian Yang, 2009. "The relationship between implied and realized volatility: evidence from the Australian stock index option market," Review of Quantitative Finance and Accounting, Springer, vol. 32(4), pages 405-419, May.
    11. Smith, Paul & Gronewoller, Paul & Rose, Lawrence C., 1998. "Pricing efficiency on the New Zealand Futures and Options Exchange," Journal of Multinational Financial Management, Elsevier, vol. 8(1), pages 49-62, January.
    12. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    13. William Pedersen, 1998. "Capturing all the information in foreign currency option prices: solving for one versus two implied variables," Applied Economics, Taylor & Francis Journals, vol. 30(12), pages 1679-1683.
    14. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    15. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    16. Imlak Shaikh & Puja Padhi, 2013. "Macroeconomic Announcements and the Implied Volatility Index: Evidence from India VIX," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(4), pages 417-442, November.
    17. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    18. Omar Esqueda & Yongli Luo & Dave Jackson, 2015. "The linkage between the U.S. “fear index” and ADR premiums under non-frictionless stock markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 541-556, July.
    19. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    20. Hwang, Soosung & Satchell, Stephen E., 2000. "Market risk and the concept of fundamental volatility: Measuring volatility across asset and derivative markets and testing for the impact of derivatives markets on financial markets," Journal of Banking & Finance, Elsevier, vol. 24(5), pages 759-785, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.07207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.