IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i1p266-295.html
   My bibliography  Save this article

Minimax powerful functional analysis of covariance tests with application to longitudinal genome‐wide association studies

Author

Listed:
  • Weicheng Zhu
  • Sheng Xu
  • Catherine C. Liu
  • Yehua Li

Abstract

We model the Alzheimer's disease‐related phenotype response variables observed on irregular time points in longitudinal Genome‐Wide Association Studies as sparse functional data and propose nonparametric test procedures to detect functional genotype effects while controlling the confounding effects of environmental covariates. Our new functional analysis of covariance tests are based on a seemingly unrelated kernel smoother, which takes into account the within‐subject temporal correlations, and thus enjoy improved power over existing functional tests. We show that the proposed test combined with a uniformly consistent nonparametric covariance function estimator enjoys the Wilks phenomenon and is minimax most powerful. Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative database, where an application of the proposed test lead to the discovery of new genes that may be related to Alzheimer's disease.

Suggested Citation

  • Weicheng Zhu & Sheng Xu & Catherine C. Liu & Yehua Li, 2023. "Minimax powerful functional analysis of covariance tests with application to longitudinal genome‐wide association studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 266-295, March.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:266-295
    DOI: 10.1111/sjos.12583
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12583
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    2. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    3. Xihong Lin, 2004. "Equivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data," Biometrika, Biometrika Trust, vol. 91(1), pages 177-193, March.
    4. Xiao Wang & Hongtu Zhu, 2017. "Generalized Scalar-on-Image Regression Models via Total Variation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1156-1168, July.
    5. Jialiang Li & Chao Huang & Zhub Hongtu, 2017. "A Functional Varying-Coefficient Single-Index Model for Functional Response Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1169-1181, July.
    6. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    7. Zhou, Lan & Huang, Jianhua Z. & Martinez, Josue G. & Maity, Arnab & Baladandayuthapani, Veerabhadran & Carroll, Raymond J., 2010. "Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 390-400.
    8. Yuhang Xu & Yehua Li & Dan Nettleton, 2018. "Nested Hierarchical Functional Data Modeling and Inference for the Analysis of Functional Plant Phenotypes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 593-606, April.
    9. Fan, Jianqing & Wu, Yichao, 2008. "Semiparametric Estimation of Covariance Matrixes for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1520-1533.
    10. Yehua Li, 2011. "Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 355-370.
    11. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    12. Fan, Jianqing & Jiang, Jiancheng, 2005. "Nonparametric Inferences for Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 890-907, September.
    13. Jia Guo & Bu Zhou & Jin-Ting Zhang, 2019. "New Tests for Equality of Several Covariance Functions for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1251-1263, July.
    14. Jin Tang & Yehua Li & Yongtao Guan, 2016. "Generalized Quasi-Likelihood Ratio Tests for Semiparametric Analysis of Covariance Models in Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 736-747, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Jia, Shengji & Zhang, Chunming & Lu, Haoran, 2022. "Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    4. Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
    5. Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
    6. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
    7. Haozhe Zhang & Yehua Li, 2020. "Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency," Papers 2006.13489, arXiv.org, revised Jun 2021.
    8. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    9. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    10. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    11. Adam D. Bull, 2015. "Semimartingale detection and goodness-of-fit tests," Papers 1506.00088, arXiv.org, revised Jun 2016.
    12. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    13. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    14. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    15. Hamadi, Malika & Heinen, Andréas, 2015. "Firm performance when ownership is very concentrated: Evidence from a semiparametric panel," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 172-194.
    16. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    17. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    18. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    19. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    20. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:266-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.