IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.08584.html
   My bibliography  Save this paper

Two-Sided Random Matching Markets: Ex-Ante Equivalence of the Deferred Acceptance Procedures

Author

Listed:
  • Simon Mauras

Abstract

Stable matching in a community consisting of $N$ men and $N$ women is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. When the input preference profile is generated from a distribution, we study the output distribution of two stable matching procedures: women-proposing-deferred-acceptance and men-proposing-deferred-acceptance. We show that the two procedures are ex-ante equivalent: that is, under certain conditions on the input distribution, their output distributions are identical. In terms of technical contributions, we generalize (to the non-uniform case) an integral formula, due to Knuth and Pittel, which gives the probability that a fixed matching is stable. Using an inclusion-exclusion principle on the set of rotations, we give a new formula which gives the probability that a fixed matching is the women/men-optimal stable matching. We show that those two probabilities are equal with an integration by substitution.

Suggested Citation

  • Simon Mauras, 2020. "Two-Sided Random Matching Markets: Ex-Ante Equivalence of the Deferred Acceptance Procedures," Papers 2005.08584, arXiv.org.
  • Handle: RePEc:arx:papers:2005.08584
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.08584
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atila Abdulkadiroğlu & Parag A. Pathak & Alvin E. Roth, 2005. "The New York City High School Match," American Economic Review, American Economic Association, vol. 95(2), pages 364-367, May.
    2. Bettina Klaus & Flip Klijn, 2006. "Procedurally fair and stable matching," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 27(2), pages 431-447, January.
    3. Itai Ashlagi & Yash Kanoria & Jacob D. Leshno, 2017. "Unbalanced Random Matching Markets: The Stark Effect of Competition," Journal of Political Economy, University of Chicago Press, vol. 125(1), pages 69-98.
    4. repec:oup:restud:v:84:y::i:1:p:444-463. is not listed on IDEAS
    5. P'eter Bir'o & Avinatan Hassidim & Assaf Romm & Ran I. Shorrer & S'andor S'ov'ag'o, 2020. "The Large Core of College Admission Markets: Theory and Evidence," Papers 2010.08631, arXiv.org, revised Aug 2022.
    6. Jinpeng Ma, 1996. "On randomized matching mechanisms (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 377-381.
    7. Roth, Alvin E & Vande Vate, John H, 1990. "Random Paths to Stability in Two-Sided Matching," Econometrica, Econometric Society, vol. 58(6), pages 1475-1480, November.
    8. Atila Abdulkadiroğlu & Parag A. Pathak & Alvin E. Roth & Tayfun Sönmez, 2005. "The Boston Public School Match," American Economic Review, American Economic Association, vol. 95(2), pages 368-371, May.
    9. Fuhito Kojima & Parag A. Pathak, 2009. "Incentives and Stability in Large Two-Sided Matching Markets," American Economic Review, American Economic Association, vol. 99(3), pages 608-627, June.
    10. Elliott Peranson & Alvin E. Roth, 1999. "The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design," American Economic Review, American Economic Association, vol. 89(4), pages 748-780, September.
    11. Boris Pittel, 2019. "On random stable partitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 433-480, June.
    12. Péter Biró & Katarína Cechlárová & Tamás Fleiner, 2008. "The dynamics of stable matchings and half-matchings for the stable marriage and roommates problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 333-352, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxwell Allman & Itai Ashlagi, 2023. "Interviewing Matching in Random Markets," Papers 2305.11350, arXiv.org, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    2. Committee, Nobel Prize, 2012. "Alvin E. Roth and Lloyd S. Shapley: Stable allocations and the practice of market design," Nobel Prize in Economics documents 2012-1, Nobel Prize Committee.
    3. Sebastian Montano Correa, 2015. "Compulsory Social Service Matching Market for Physicians in Colombia," Documentos CEDE 12856, Universidad de los Andes, Facultad de Economía, CEDE.
    4. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    5. Afacan, Mustafa Og̃uz & Dur, Umut Mert, 2017. "When preference misreporting is Harm[less]ful?," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 16-24.
    6. Hatfield, John William & Kojima, Fuhito, 2010. "Substitutes and stability for matching with contracts," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1704-1723, September.
    7. Bettina Klaus & David F. Manlove & Francesca Rossi, 2014. "Matching under Preferences," Cahiers de Recherches Economiques du Département d'économie 14.07, Université de Lausanne, Faculté des HEC, Département d’économie.
    8. Saraiva, Gustavo, 2021. "An improved bound to manipulation in large stable matches," Games and Economic Behavior, Elsevier, vol. 129(C), pages 55-77.
    9. Haeringer, Guillaume & Klijn, Flip, 2009. "Constrained school choice," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1921-1947, September.
    10. Min Zhu, 2013. "College Admissions in China : A Mechanism Design Perspective," Working Papers 1327, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    11. Zhu, Min, 2014. "College admissions in China: A mechanism design perspective," China Economic Review, Elsevier, vol. 30(C), pages 618-631.
    12. Alvin E. Roth, 2009. "What Have We Learned from Market Design?," Innovation Policy and the Economy, University of Chicago Press, vol. 9(1), pages 79-112.
    13. EHLERS, Lars, 2010. "School Choice with Control," Cahiers de recherche 2010-05, Universite de Montreal, Departement de sciences economiques.
    14. John William Hatfield & Fuhito Kojima & Yusuke Narita, 2011. "Promoting School Competition Through School Choice: A Market Design Approach," Working Papers 2011-018, Human Capital and Economic Opportunity Working Group.
    15. Rheingans-Yoo, Ross, 2024. "Large random matching markets with localized preference structures can exhibit large cores," Games and Economic Behavior, Elsevier, vol. 144(C), pages 71-83.
    16. Chen, Yan & Jiang, Ming & Kesten, Onur & Robin, Stéphane & Zhu, Min, 2018. "Matching in the large: An experimental study," Games and Economic Behavior, Elsevier, vol. 110(C), pages 295-317.
    17. Kojima, Fuhito & Manea, Mihai, 2010. "Incentives in the probabilistic serial mechanism," Journal of Economic Theory, Elsevier, vol. 145(1), pages 106-123, January.
    18. Alvin E. Roth, 2024. "Market Design and Maintenance," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
    19. Péter Biró & Sofya Kiselgof, 2015. "College admissions with stable score-limits," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(4), pages 727-741, December.
    20. Jay Sethuraman & Chung-Piaw Teo & Liwen Qian, 2006. "Many-to-One Stable Matching: Geometry and Fairness," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 581-596, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.08584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.