IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/129030.html
   My bibliography  Save this paper

Modified-likelihood estimation of fixed-effect models for dyadic data

Author

Listed:
  • Jochmans, Koen

Abstract

We consider point estimation and inference based on modifications of the profile likelihood in models for dyadic interactions between n agents featuring agent-specific parameters. The maximum-likelihood estimator of such models has bias and standard deviation of order n-1 and so is asymptotically biased. Estimation based on modified likelihoods leads to estimators that are asymptotically unbiased and likelihood ratio tests that exhibit correct size.

Suggested Citation

  • Jochmans, Koen, 2024. "Modified-likelihood estimation of fixed-effect models for dyadic data," TSE Working Papers 24-1502, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:129030
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2024/wp_tse_1502.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    2. Bajari, Patrick & Hong, Han & Krainer, John & Nekipelov, Denis, 2010. "Estimating Static Models of Strategic Interactions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 469-482.
    3. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    4. Iván Fernández-Val & Martin Weidner, 2018. "Fixed Effects Estimation of Large-TPanel Data Models," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
    5. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    6. Manuel Arellano & Jinyong Hahn, 2016. "A likelihood-Based Approximate Solution to the Incidental Parameter Problem in Dynamic Nonlinear Models with Multiple Effects," Global Economic Review, Taylor & Francis Journals, vol. 45(3), pages 251-274, July.
    7. Rilstone, Paul & Srivastava, V. K. & Ullah, Aman, 1996. "The second-order bias and mean squared error of nonlinear estimators," Journal of Econometrics, Elsevier, vol. 75(2), pages 369-395, December.
    8. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    9. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    2. Xuan Leng & Jiaming Mao & Yutao Sun, 2023. "Debiased Inference for Dynamic Nonlinear Panels with Multi-dimensional Heterogeneities," Papers 2305.03134, arXiv.org, revised Nov 2024.
    3. David W. Hughes, 2021. "Estimating Nonlinear Network Data Models with Fixed Effects," Boston College Working Papers in Economics 1058, Boston College Department of Economics.
    4. Francesco Bartolucci & Francesco Valentini & Claudia Pigini, 2023. "Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 529-557, February.
    5. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    6. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    7. Kunz, J.S.; & Staub, K.E.; & Winkelmann, R.;, 2018. "Predicting fixed effects in panel probit models," Health, Econometrics and Data Group (HEDG) Working Papers 18/23, HEDG, c/o Department of Economics, University of York.
    8. Carneiro, Anabela & Portugal, Pedro & Raposo, Pedro & Rodrigues, Paulo M.M., 2023. "The persistence of wages," Journal of Econometrics, Elsevier, vol. 233(2), pages 596-611.
    9. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2023. "Conditional inference and bias reduction for partial effects estimation of fixed-effects logit models," Empirical Economics, Springer, vol. 64(5), pages 2257-2290, May.
    10. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    11. Jochmans, Koen & Higgins, Ayden, 2022. "Bootstrap inference for fixed-effect models," TSE Working Papers 22-1328, Toulouse School of Economics (TSE), revised Dec 2023.
    12. Gao, Jiti & Liu, Fei & Peng, Bin & Yan, Yayi, 2023. "Binary response models for heterogeneous panel data with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 1654-1679.
    13. Mingyang Li & Linlin Niu & Andrew Pua, 2020. "Market Pricing of Fundamentals at the Shanghai Stock Exchange: Evidence from a Dividend Discount Model with Adaptive Expectations," Working Papers 2020-12-30, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    14. L. Hospido, 2012. "Modelling heterogeneity and dynamics in the volatility of individual wages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 386-414, April.
    15. Jesus M. Carro & Alejandra Traferri, 2014. "State Dependence And Heterogeneity In Health Using A Bias‐Corrected Fixed‐Effects Estimator," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 181-207, March.
    16. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    17. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    18. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    19. Fernández-Val, Iván & Gao, Wayne Yuan & Liao, Yuan & Vella, Francis, 2022. "Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes," IZA Discussion Papers 15236, Institute of Labor Economics (IZA).
    20. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.

    More about this item

    Keywords

    Asymptotic bias; Dyadic data; Fixed effects ; Undirected random graph;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:129030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.