IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.09591.html
   My bibliography  Save this paper

Semi-closed form prices of barrier options in the Hull-White model

Author

Listed:
  • Andrey Itkin
  • Dmitry Muravey

Abstract

In this paper we derive semi-closed form prices of barrier (perhaps, time-dependent) options for the Hull-White model, ie., where the underlying follows a time-dependent OU process with a mean-reverting drift. Our approach is similar to that in (Carr and Itkin, 2020) where the method of generalized integral transform is applied to pricing barrier options in the time-dependent OU model, but extends it to an infinite domain (which is an unsolved problem yet). Alternatively, we use the method of heat potentials for solving the same problems. By semi-closed solution we mean that first, we need to solve numerically a linear Volterra equation of the first kind, and then the option price is represented as a one-dimensional integral. Our analysis shows that computationally our method is more efficient than the backward and even forward finite difference methods (if one uses them to solve those problems), while providing better accuracy and stability.

Suggested Citation

  • Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the Hull-White model," Papers 2004.09591, arXiv.org, revised Sep 2020.
  • Handle: RePEc:arx:papers:2004.09591
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.09591
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Lipton & Vadim Kaushansky, 2018. "On the First Hitting Time Density of an Ornstein-Uhlenbeck Process," Papers 1810.02390, arXiv.org, revised Oct 2018.
    2. Peter Carr & Andrey Itkin, 2020. "Semi-closed form solutions for barrier and American options written on a time-dependent Ornstein Uhlenbeck process," Papers 2003.08853, arXiv.org, revised Mar 2020.
    3. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Itkin & A. Lipton & D. Muravey, 2020. "From the Black-Karasinski to the Verhulst model to accommodate the unconventional Fed's policy," Papers 2006.11976, arXiv.org, revised Jan 2021.
    2. P. Carr & A. Itkin & D. Muravey, 2022. "Semi-analytical pricing of barrier options in the time-dependent Heston model," Papers 2202.06177, arXiv.org.
    3. Andrey Itkin & Dmitry Muravey, 2020. "Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit," Papers 2009.09342, arXiv.org, revised Oct 2020.
    4. Peter Carr & Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the time-dependent CEV and CIR models," Papers 2005.05459, arXiv.org.
    5. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    6. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    7. Andrey Itkin & Dmitry Muravey, 2023. "American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support," Papers 2307.13870, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Itkin & Dmitry Muravey, 2020. "Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit," Papers 2009.09342, arXiv.org, revised Oct 2020.
    2. Alexander Lipton, 2020. "Old Problems, Classical Methods, New Solutions," Papers 2003.06903, arXiv.org.
    3. Peter Carr & Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the time-dependent CEV and CIR models," Papers 2005.05459, arXiv.org.
    4. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.
    5. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    6. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.
    7. A. Itkin & A. Lipton & D. Muravey, 2020. "From the Black-Karasinski to the Verhulst model to accommodate the unconventional Fed's policy," Papers 2006.11976, arXiv.org, revised Jan 2021.
    8. Lazar, Emese & Qi, Shuyuan, 2022. "Model risk in the over-the-counter market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 769-784.
    9. Sophia Gu, 2021. "Deep Reinforcement Learning with Function Properties in Mean Reversion Strategies," Papers 2101.03418, arXiv.org, revised Sep 2021.
    10. Peter Carr & Andrey Itkin, 2020. "Semi-closed form solutions for barrier and American options written on a time-dependent Ornstein Uhlenbeck process," Papers 2003.08853, arXiv.org, revised Mar 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.09591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.