IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2003.08853.html
   My bibliography  Save this paper

Semi-closed form solutions for barrier and American options written on a time-dependent Ornstein Uhlenbeck process

Author

Listed:
  • Peter Carr
  • Andrey Itkin

Abstract

In this paper we develop a semi-closed form solutions for the barrier (perhaps, time-dependent) and American options written on the underlying stock which follows a time-dependent OU process with a log-normal drift. This model is equivalent to the familiar Hull-White model in FI, or a time dependent OU model in FX. Semi-closed form means that given the time-dependent interest rate, continuous dividend and volatility functions, one need to solve numerically a linear (for the barrier option) or nonlinear (for the American option) Fredholm equation of the first kind. After that the option prices in all cases are presented as one-dimensional integrals of combination of the above solutions and Jacobi theta functions. We also demonstrate that computationally our method is more efficient than the backward finite difference method used for solving these problems, and can also be as efficient as the forward finite difference solver while providing better accuracy and stability.

Suggested Citation

  • Peter Carr & Andrey Itkin, 2020. "Semi-closed form solutions for barrier and American options written on a time-dependent Ornstein Uhlenbeck process," Papers 2003.08853, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:2003.08853
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2003.08853
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.
    2. Aleksandar Mijatović, 2010. "Local time and the pricing of time-dependent barrier options," Finance and Stochastics, Springer, vol. 14(1), pages 13-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Itkin & A. Lipton & D. Muravey, 2020. "From the Black-Karasinski to the Verhulst model to accommodate the unconventional Fed's policy," Papers 2006.11976, arXiv.org, revised Jan 2021.
    2. Andrey Itkin & Dmitry Muravey, 2020. "Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit," Papers 2009.09342, arXiv.org, revised Oct 2020.
    3. Peter Carr & Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the time-dependent CEV and CIR models," Papers 2005.05459, arXiv.org.
    4. Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the Hull-White model," Papers 2004.09591, arXiv.org, revised Sep 2020.
    5. Lazar, Emese & Qi, Shuyuan, 2022. "Model risk in the over-the-counter market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 769-784.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Itkin & Dmitry Muravey, 2020. "Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit," Papers 2009.09342, arXiv.org, revised Oct 2020.
    2. Alexander Lipton, 2020. "Old Problems, Classical Methods, New Solutions," Papers 2003.06903, arXiv.org.
    3. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    4. Jos� Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    5. Peter Carr & Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the time-dependent CEV and CIR models," Papers 2005.05459, arXiv.org.
    6. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    7. Aleksandar Mijatovic & Mikhail Urusov, 2009. "On the Martingale Property of Certain Local Martingales," Papers 0905.3701, arXiv.org, revised Oct 2010.
    8. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    9. Sophia Gu, 2021. "Deep Reinforcement Learning with Function Properties in Mean Reversion Strategies," Papers 2101.03418, arXiv.org, revised Sep 2021.
    10. Andrey Itkin & Dmitry Muravey, 2020. "Semi-closed form prices of barrier options in the Hull-White model," Papers 2004.09591, arXiv.org, revised Sep 2020.
    11. Michele Bonollo & Luca Di Persio & Luca Mammi & Immacolata Oliva, 2017. "Estimating the Counterparty Risk Exposure by using the Brownian Motion Local Time," Papers 1704.03244, arXiv.org.
    12. Trutnau, Gerald, 2011. "Pathwise uniqueness of the squared Bessel and CIR processes with skew reflection on a deterministic time dependent curve," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1845-1863, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.08853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.