IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.00922.html
   My bibliography  Save this paper

A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability

Author

Listed:
  • Yafei Han
  • Francisco Camara Pereira
  • Moshe Ben-Akiva
  • Christopher Zegras

Abstract

Discrete choice models (DCMs) require a priori knowledge of the utility functions, especially how tastes vary across individuals. Utility misspecification may lead to biased estimates, inaccurate interpretations and limited predictability. In this paper, we utilize a neural network to learn taste representation. Our formulation consists of two modules: a neural network (TasteNet) that learns taste parameters (e.g., time coefficient) as flexible functions of individual characteristics; and a multinomial logit (MNL) model with utility functions defined with expert knowledge. Taste parameters learned by the neural network are fed into the choice model and link the two modules. Our approach extends the L-MNL model (Sifringer et al., 2020) by allowing the neural network to learn the interactions between individual characteristics and alternative attributes. Moreover, we formalize and strengthen the interpretability condition - requiring realistic estimates of behavior indicators (e.g., value-of-time, elasticity) at the disaggregated level, which is crucial for a model to be suitable for scenario analysis and policy decisions. Through a unique network architecture and parameter transformation, we incorporate prior knowledge and guide the neural network to output realistic behavior indicators at the disaggregated level. We show that TasteNet-MNL reaches the ground-truth model's predictability and recovers the nonlinear taste functions on synthetic data. Its estimated value-of-time and choice elasticities at the individual level are close to the ground truth. On a publicly available Swissmetro dataset, TasteNet-MNL outperforms benchmarking MNLs and Mixed Logit model's predictability. It learns a broader spectrum of taste variations within the population and suggests a higher average value-of-time.

Suggested Citation

  • Yafei Han & Francisco Camara Pereira & Moshe Ben-Akiva & Christopher Zegras, 2020. "A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability," Papers 2002.00922, arXiv.org, revised Jul 2022.
  • Handle: RePEc:arx:papers:2002.00922
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.00922
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Torres, Cati & Hanley, Nick & Riera, Antoni, 2011. "How wrong can you be? Implications of incorrect utility function specification for welfare measurement in choice experiments," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 111-121, July.
    2. Shenhao Wang & Qingyi Wang & Jinhua Zhao, 2019. "Multitask Learning Deep Neural Networks to Combine Revealed and Stated Preference Data," Papers 1901.00227, arXiv.org, revised Aug 2019.
    3. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    4. Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
    5. Gupta, Sunil & Cooper, Lee G, 1992. "The Discounting of Discounts and Promotion Thresholds," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(3), pages 401-411, December.
    6. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
    7. Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
    8. Kalyanaram, Gurumurthy & Little, John D C, 1994. "An Empirical Analysis of Latitude of Price Acceptance in Consumer Package Goods," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 21(3), pages 408-418, December.
    9. Hensher, David A. & Ton, Tu T., 2000. "A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(3), pages 155-172, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daisik Nam & Jaewoo Cho, 2020. "Deep Neural Network Design for Modeling Individual-Level Travel Mode Choice Behavior," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    2. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    3. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    4. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    5. Ortelli, Nicola & Hillel, Tim & Pereira, Francisco C. & de Lapparent, Matthieu & Bierlaire, Michel, 2021. "Assisted specification of discrete choice models," Journal of choice modelling, Elsevier, vol. 39(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    2. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    3. Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
    4. Harald Hruschka, 2007. "Using a heterogeneous multinomial probit model with a neural net extension to model brand choice," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 113-127.
    5. Casado, Esteban & Ferrer, Juan-Carlos, 2013. "Consumer price sensitivity in the retail industry: Latitude of acceptance with heterogeneous demand," European Journal of Operational Research, Elsevier, vol. 228(2), pages 418-426.
    6. Nobuhiko Terui & Wirawan Dony Dahana, 2006. "Research Note—Estimating Heterogeneous Price Thresholds," Marketing Science, INFORMS, vol. 25(4), pages 384-391, 07-08.
    7. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    8. van Oest, Rutger, 2013. "Why are Consumers Less Loss Averse in Internal than External Reference Prices?," Journal of Retailing, Elsevier, vol. 89(1), pages 62-71.
    9. Lillian L. Cheng & Kent B. Monroe, 2013. "An appraisal of behavioral price research (part 1): price as a physical stimulus," AMS Review, Springer;Academy of Marketing Science, vol. 3(3), pages 103-129, September.
    10. Aku-Ville Lehtimäki & Kent B. Monroe & Outi Somervuori, 2019. "The influence of regular price level (low, medium, or high) and framing of discount (monetary or percentage) on perceived attractiveness of discount amount," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(1), pages 76-85, February.
    11. Sheehan, Daniel & Hardesty, David M. & Ziegler, Alexander H. & Chen, Haipeng (Allan), 2019. "Consumer reactions to price discounts across online shopping experiences," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 129-138.
    12. Yuval Arbel & Danny Ben-Shahar & Stuart Gabriel, 2016. "Are The Disabled Less Loss Averse? Evidence From A Natural Policy Experiment," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 1291-1318, April.
    13. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    14. Sebastian Schneider, 2022. "Price-related consumer discussions in China and the United States: a cross-cultural study investigating price perceptions and word-of-mouth transmission," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(3), pages 274-290, June.
    15. Yan, Xiaoming & Zhao, Wenhan & Yu, Yugang, 2022. "Optimal product line design with reference price effects," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1045-1062.
    16. Hyeong Kim & Thomas Kramer, 2006. "“Pay 80%” versus “get 20% off”: The effect of novel discount presentation on consumers’ deal perceptions," Marketing Letters, Springer, vol. 17(4), pages 311-321, December.
    17. Hunneman, Auke & Verhoef, Peter C. & Sloot, Laurens M., 2021. "The impact of hard discounter presence on store satisfaction and store loyalty," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    18. Robert Slonim & Ellen Garbarino, 2009. "Similarities and differences between stockpiling and reference effects," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 351-371.
    19. Chen, Haipeng (Allan) & Levy, Daniel & Ray, Sourav & Bergen, Mark, 2008. "Asymmetric Price Adjustment in the Small," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 55(4), pages 728-737.
    20. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.00922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.