Deep Neural Network Design for Modeling Individual-Level Travel Mode Choice Behavior
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kenneth Train, 1980. "A Structured Logit Model of Auto Ownership and Mode Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 357-370.
- Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
- Brownstone, David & Golob, Thomas F., 1992.
"The effectiveness of ridesharing incentives: Discrete-choice models of commuting in Southern California,"
Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 5-24, March.
- Brownstone, David & Golob, Thomas F., 1992. "The Effectiveness of Ridesharing Incentives: Discrete-choice Models of Commuting in Southern California," University of California Transportation Center, Working Papers qt0w0518qd, University of California Transportation Center.
- Peng Jing & Mengxuan Zhao & Meiling He & Long Chen, 2018. "Travel Mode and Travel Route Choice Behavior Based on Random Regret Minimization: A Systematic Review," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
- Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
- Hensher, David A. & Ton, Tu T., 2000. "A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(3), pages 155-172, September.
- Yafei Han & Francisco Camara Pereira & Moshe Ben-Akiva & Christopher Zegras, 2020. "A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability," Papers 2002.00922, arXiv.org, revised Jul 2022.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
- Hamed Naseri & Edward Owen Douglas Waygood & Bobin Wang & Zachary Patterson, 2022. "Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peter Davis & Pasquale Schiraldi, 2014.
"The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products,"
RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
- Davis, Peter & Schiraldi, Pasquale, 2013. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," LSE Research Online Documents on Economics 54252, London School of Economics and Political Science, LSE Library.
- Schiraldi, Pasquale & Davis, Peter, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," LSE Research Online Documents on Economics 46855, London School of Economics and Political Science, LSE Library.
- Pereira, Pedro & Ribeiro, Tiago & Vareda, João, 2013. "Delineating markets for bundles with consumer level data: The case of triple-play," International Journal of Industrial Organization, Elsevier, vol. 31(6), pages 760-773.
- Laura Grigolon, 2021.
"Blurred boundaries: A flexible approach for segmentation applied to the car market,"
Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
- Laura Grigolon, 2017. "Blurred boundaries: a flexible approach for segmentation applied to the car market," Department of Economics Working Papers 2017-17, McMaster University.
- Laura Grigolon, 2019. "Blurred Boundaries: A Flexible Approach for Segmentation Applied to the Car Market," CRC TR 224 Discussion Paper Series crctr224_2019_127, University of Bonn and University of Mannheim, Germany.
- Grigolon, Laura & ,, 2021. "Blurred boundaries: a flexible approach for segmentation applied to the car market," CEPR Discussion Papers 15630, C.E.P.R. Discussion Papers.
- Zheng Zhu & Xiqun Chen & Chenfeng Xiong & Lei Zhang, 2018. "A mixed Bayesian network for two-dimensional decision modeling of departure time and mode choice," Transportation, Springer, vol. 45(5), pages 1499-1522, September.
- Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
- Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
- Shi, Haolun & Yin, Guosheng, 2018. "Boosting conditional logit model," Journal of choice modelling, Elsevier, vol. 26(C), pages 48-63.
- Hongmin Li & Scott Webster, 2017. "Optimal Pricing of Correlated Product Options Under the Paired Combinatorial Logit Model," Operations Research, INFORMS, vol. 65(5), pages 1215-1230, October.
- Drabas, Tomasz & Wu, Cheng-Lung, 2013. "Modelling air carrier choices with a Segment Specific Cross Nested Logit model," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 8-16.
- Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
- Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
- Salon, Deborah, 2009. "Neighborhoods, cars, and commuting in New York City: A discrete choice approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 180-196, February.
- S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
- Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
- Pinjari, Abdul Rawoof, 2011. "Generalized extreme value (GEV)-based error structures for multiple discrete-continuous choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 474-489, March.
- Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
- Bekhor, Shlomo & Prashker, Joseph N., 2008. "GEV-based destination choice models that account for unobserved similarities among alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 243-262, March.
- Salon, Deborah, 2006. "Cars and the City: An Investigation of Transportation and Residential Location Choices in New York City," University of California Transportation Center, Working Papers qt1br223vz, University of California Transportation Center.
- Wang, Shenhao & Wang, Qingyi & Bailey, Nate & Zhao, Jinhua, 2021. "Deep neural networks for choice analysis: A statistical learning theory perspective," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 60-81.
- Khordagui, Nagwa, 2019. "Parking prices and the decision to drive to work: Evidence from California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 479-495.
More about this item
Keywords
discrete choice model; deep neural network; mode choice behavior; smart urban mobility; individual-level choice prediction; agent-based model; random utility model; logit model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7481-:d:412134. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.