IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.00103.html
   My bibliography  Save this paper

Estimating Welfare Effects in a Nonparametric Choice Model: The Case of School Vouchers

Author

Listed:
  • Vishal Kamat
  • Samuel Norris

Abstract

We develop new robust discrete choice tools to learn about the average willingness to pay for a price subsidy and its effects on demand given exogenous, discrete variation in prices. Our starting point is a nonparametric, nonseparable model of choice. We exploit the insight that our welfare parameters in this model can be expressed as functions of demand for the different alternatives. However, while the variation in the data reveals the value of demand at the observed prices, the parameters generally depend on its values beyond these prices. We show how to sharply characterize what we can learn when demand is specified to be entirely nonparametric or to be parameterized in a flexible manner, both of which imply that the parameters are not necessarily point identified. We use our tools to analyze the welfare effects of price subsidies provided by school vouchers in the DC Opportunity Scholarship Program. We find that the provision of the status quo voucher and a wide range of counterfactual vouchers of different amounts can have positive and potentially large benefits net of costs. The positive effect can be explained by the popularity of low-tuition schools in the program; removing them from the program can result in a negative net benefit. We also find that various standard logit specifications, in comparison, limit attention to demand functions with low demand for the voucher, which do not capture the large magnitudes of benefits credibly consistent with the data.

Suggested Citation

  • Vishal Kamat & Samuel Norris, 2020. "Estimating Welfare Effects in a Nonparametric Choice Model: The Case of School Vouchers," Papers 2002.00103, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2002.00103
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.00103
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Debopam Bhattacharya, 2018. "Empirical welfare analysis for discrete choice: Some general results," Quantitative Economics, Econometric Society, vol. 9(2), pages 571-615, July.
    2. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    3. Xiaohong Chen & Elie Tamer & Alexander Torgovitsky, 2011. "Sensitivity Analysis in Semiparametric Likelihood Models," Cowles Foundation Discussion Papers 1836, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    2. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    4. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    5. Deniz Dutz & Ingrid Huitfeldt & Santiago Lacouture & Magne Mogstad & Alexander Torgovitsky & Winnie van Dijk, 2021. "Selection in Surveys," NBER Working Papers 29549, National Bureau of Economic Research, Inc.
      • Deniz Dutz & Ingrid Huitfeldt & Santiago Lacouture & Magne Mogstad & Alexander Torgovitsky & Winnie van Dijk, 2021. "Selection in Surveys," Discussion Papers 971, Statistics Norway, Research Department.
    6. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2024. "Demand and Welfare Analysis in Discrete Choice Models with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 748-784.
    7. Leonard Goff, 2024. "When does IV identification not restrict outcomes?," Papers 2406.02835, arXiv.org, revised Sep 2024.
    8. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Ivan A Canay & Magne Mogstad & Jack Mount, 2024. "On the Use of Outcome Tests for Detecting Bias in Decision Making," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(4), pages 2135-2167.
    10. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    11. Steven T. Berry & Philip A. Haile, 2024. "Nonparametric Identification of Differentiated Products Demand Using Micro Data," Econometrica, Econometric Society, vol. 92(4), pages 1135-1162, July.
    12. Elisa Gerten & Michael Beckmann & Elisa Gerten & Matthias Kräkel, 2022. "Information and Communication Technology, Hierarchy, and Job Design," ECONtribute Discussion Papers Series 189, University of Bonn and University of Cologne, Germany.
    13. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    15. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    16. Robert W. Hahn & Robert D. Metcalfe, 2021. "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, American Economic Association, vol. 111(5), pages 1658-1688, May.
    17. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    18. Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.
    19. Vishal Kamat & Samuel Norris & Matthew Pecenco, 2023. "Identification in Multiple Treatment Models under Discrete Variation," Papers 2307.06174, arXiv.org.
    20. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.00103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.