IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.05193.html
   My bibliography  Save this paper

Optical Proof of Work

Author

Listed:
  • Michael Dubrovsky
  • Marshall Ball
  • Bogdan Penkovsky

Abstract

Most cryptocurrencies rely on Proof-of-Work (PoW) "mining" for resistance to Sybil and double-spending attacks, as well as a mechanism for currency issuance. Hashcash PoW has successfully secured the Bitcoin network since its inception, however, as the network has expanded to take on additional value storage and transaction volume, Bitcoin PoW's heavy reliance on electricity has created scalability issues, environmental concerns, and systemic risks. Mining efforts have concentrated in areas with low electricity costs, creating single points of failure. Although PoW security properties rely on imposing a trivially verifiable economic cost on miners, there is no fundamental reason for it to consist primarily of electricity cost. The authors propose a novel PoW algorithm, Optical Proof of Work (oPoW), to eliminate energy as the primary cost of mining. Proposed algorithm imposes economic difficulty on the miners, however, the cost is concentrated in hardware (capital expense-CAPEX) rather than electricity (operating expenses-OPEX). The oPoW scheme involves minimal modifications to Hashcash-like PoW schemes, inheriting safety/security properties from such schemes. Rapid growth and improvement in silicon photonics over the last two decades has led to the commercialization of silicon photonic co-processors (integrated circuits that use photons instead of electrons to perform specialized computing tasks) for low-energy deep learning. oPoW is optimized for this technology such that miners are incentivized to use specialized, energy-efficient photonics for computation. Beyond providing energy savings, oPoW has the potential to improve network scalability, enable decentralized mining outside of low electricity cost areas, and democratize issuance. Due to the CAPEX dominance of mining costs, oPoW hashrate will be significantly less sensitive to underlying coin price declines.

Suggested Citation

  • Michael Dubrovsky & Marshall Ball & Bogdan Penkovsky, 2019. "Optical Proof of Work," Papers 1911.05193, arXiv.org, revised Feb 2020.
  • Handle: RePEc:arx:papers:1911.05193
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.05193
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qianfan Xu & Bradley Schmidt & Sameer Pradhan & Michal Lipson, 2005. "Micrometre-scale silicon electro-optic modulator," Nature, Nature, vol. 435(7040), pages 325-327, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Yuan & Yiwei Peng & Wayne V. Sorin & Stanley Cheung & Zhihong Huang & Di Liang & Marco Fiorentino & Raymond G. Beausoleil, 2024. "A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Wei-Che Hsu & Nabila Nujhat & Benjamin Kupp & John F. Conley & Haisheng Rong & Ranjeet Kumar & Alan X. Wang, 2024. "Sub-volt high-speed silicon MOSCAP microring modulator driven by high-mobility conductive oxide," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Seong Won Lee & Jong Seok Lee & Woo Hun Choi & Daegwang Choi & Su-Hyun Gong, 2024. "Ultra-compact exciton polariton modulator based on van der Waals semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Emma Lomonte & Martin A. Wolff & Fabian Beutel & Simone Ferrari & Carsten Schuck & Wolfram H. P. Pernice & Francesco Lenzini, 2021. "Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. I-Tung Chen & Bingzhao Li & Seokhyeong Lee & Srivatsa Chakravarthi & Kai-Mei Fu & Mo Li, 2023. "Optomechanical ring resonator for efficient microwave-optical frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Dmitry Kazakov & Theodore P. Letsou & Maximilian Beiser & Yiyang Zhi & Nikola Opačak & Marco Piccardo & Benedikt Schwarz & Federico Capasso, 2024. "Active mid-infrared ring resonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.05193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.