Stochastic mortality models: An infinite dimensional approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nan Zhu & Daniel Bauer, 2011. "Applications of Forward Mortality Factor Models in Life Insurance Practice*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 567-594, October.
- Norberg, Ragnar, 2010. "Forward mortality and other vital rates -- Are they the way forward?," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 105-112, October.
- LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
- Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
- Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
- David Heath & Robert Jarrow & Andrew Morton, 2008.
"Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation,"
World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305,
World Scientific Publishing Co. Pte. Ltd..
- Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
- Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
- Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stefan Tappe & Stefan Weber, 2014. "Stochastic mortality models: an infinite-dimensional approach," Finance and Stochastics, Springer, vol. 18(1), pages 209-248, January.
- Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
- Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
- Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017.
"Retirement spending and biological age,"
Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
- Huaxiong Huang & Moshe A. Milevsky & Thomas S. Salisbury, 2018. "Retirement spending and biological age," Papers 1811.09921, arXiv.org.
- Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
- Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
- Kira Henshaw & Corina Constantinescu & Olivier Menoukeu Pamen, 2020. "Stochastic Mortality Modelling for Dependent Coupled Lives," Risks, MDPI, vol. 8(1), pages 1-28, February.
- Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013.
"Mortality surface by means of continuous time cohort models,"
Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
- Petar Jevtic & Elisa Luciano & Elena Vigna, 2012. "Mortality Surface by Means of Continuous Time Cohort Models," Carlo Alberto Notebooks 264, Collegio Carlo Alberto, revised 2013.
- Jang, Jiwook & Qu, Yan & Zhao, Hongbiao & Dassios, Angelos, 2023. "A Cox model for gradually disappearing events," LSE Research Online Documents on Economics 112754, London School of Economics and Political Science, LSE Library.
- Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
- Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
- Barbarin, Jérôme, 2008. "Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 41-55, August.
- Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018.
"Longevity risk and capital markets: The 2015–16 update,"
Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
- David Blake & Nicole El Karoui & Stéphane Loisel & Richard Macminn, 2018. "Longevity risk and capital markets: The 2015–16 update," Post-Print hal-01995778, HAL.
- Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
- Date, P. & Mamon, R. & Jalen, L. & Wang, I.C., 2010. "A linear algebraic method for pricing temporary life annuities and insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 98-104, August.
- Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
- Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008.
"Modelling stochastic mortality for dependent lives,"
Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
- Elisa Luciano & Jaap Spreeuw & Elena Vigna, 2007. "Modelling stochastic mortality for dependent lives," Carlo Alberto Notebooks 43, Collegio Carlo Alberto.
- Elisa Luciano & Jaap Spreeuw & Elena Vigna, 2007. "Modelling Stochastic Mortality for Dependent Lives," CeRP Working Papers 58, Center for Research on Pensions and Welfare Policies, Turin (Italy).
- Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.
- LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.05157. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.