IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.12152.html
   My bibliography  Save this paper

DeepFolio: Convolutional Neural Networks for Portfolios with Limit Order Book Data

Author

Listed:
  • Aiusha Sangadiev
  • Rodrigo Rivera-Castro
  • Kirill Stepanov
  • Andrey Poddubny
  • Kirill Bubenchikov
  • Nikita Bekezin
  • Polina Pilyugina
  • Evgeny Burnaev

Abstract

This work proposes DeepFolio, a new model for deep portfolio management based on data from limit order books (LOB). DeepFolio solves problems found in the state-of-the-art for LOB data to predict price movements. Our evaluation consists of two scenarios using a large dataset of millions of time series. The improvements deliver superior results both in cases of abundant as well as scarce data. The experiments show that DeepFolio outperforms the state-of-the-art on the benchmark FI-2010 LOB. Further, we use DeepFolio for optimal portfolio allocation of crypto-assets with rebalancing. For this purpose, we use two loss-functions - Sharpe ratio loss and minimum volatility risk. We show that DeepFolio outperforms widely used portfolio allocation techniques in the literature.

Suggested Citation

  • Aiusha Sangadiev & Rodrigo Rivera-Castro & Kirill Stepanov & Andrey Poddubny & Kirill Bubenchikov & Nikita Bekezin & Polina Pilyugina & Evgeny Burnaev, 2020. "DeepFolio: Convolutional Neural Networks for Portfolios with Limit Order Book Data," Papers 2008.12152, arXiv.org.
  • Handle: RePEc:arx:papers:2008.12152
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.12152
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioanid Rosu, 2010. "Liquidity and Information in Order Driven markets," Post-Print hal-00543545, HAL.
    2. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    3. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    4. Ioanid Rosu, 2010. "Liquidity and Information in Order Driven markets," Post-Print hal-00543540, HAL.
    5. Ioanid Rosu, 2010. "Liquidity and Information in Order Driven markets," Post-Print hal-00543547, HAL.
    6. Ioanid Rosu, 2010. "Liquidity and Information in Order Driven Markets," Working Papers hal-00515891, HAL.
    7. Ioanid Rosu, 2010. "Liquidity and Information in Order Driven markets," Post-Print hal-00543544, HAL.
    8. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    9. Ioanid Rosu, 2010. "Liquidity and Information in Order Driven markets," Post-Print hal-00543546, HAL.
    10. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    11. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    12. Ioanid Rosu, 2010. "Liquidity and Information in Order Driven markets," Post-Print hal-00543541, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    2. Alberto Ciacci & Takumi Sueshige & Hideki Takayasu & Kim Christensen & Misako Takayasu, 2020. "The microscopic relationships between triangular arbitrage and cross-currency correlations in a simple agent based model of foreign exchange markets," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    3. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    4. Yiqi Liu & Qiang Liu & Zhi Liu & Deng Ding, 2017. "Determining the integrated volatility via limit order books with multiple records," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1697-1714, November.
    5. Dugast, J., 2013. "Limited attention and news arrival in limit order markets," Working papers 449, Banque de France.
    6. Hautsch, Nikolaus & Huang, Ruihong, 2012. "The market impact of a limit order," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 501-522.
    7. Yosra Mefteh Rekik & Younes Boujelbene, 2015. "Price Dynamics and Market Volatility: Behavioral Heterogeneity under Switching Trading Strategies on Artificial Financial Market," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 6(2), pages 33-43, April.
    8. Ingrid Lo & Stephen Sapp, 2011. "Belief Dispersion and Order Submission Strategies in the Foreign Exchange Market," Staff Working Papers 11-8, Bank of Canada.
    9. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    10. Kozhan, Roman & Salmon, Mark, 2012. "The information content of a limit order book: The case of an FX market," Journal of Financial Markets, Elsevier, vol. 15(1), pages 1-28.
    11. Alessio Emanuele Biondo, 2020. "Information versus imitation in a real-time agent-based model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(3), pages 613-631, July.
    12. Hyungjun Park & Min Kyu Sim & Dong Gu Choi, 2019. "An intelligent financial portfolio trading strategy using deep Q-learning," Papers 1907.03665, arXiv.org, revised Nov 2019.
    13. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    14. Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
    15. Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
    16. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    17. Eduard Silantyev, 2019. "Order flow analysis of cryptocurrency markets," Digital Finance, Springer, vol. 1(1), pages 191-218, November.
    18. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    19. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    20. Takuya Shintate & Lukáš Pichl, 2019. "Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning," JRFM, MDPI, vol. 12(1), pages 1-15, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.12152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.