IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.05315.html
   My bibliography  Save this paper

Calibrating rough volatility models: a convolutional neural network approach

Author

Listed:
  • Henry Stone

Abstract

In this paper we use convolutional neural networks to find the H\"older exponent of simulated sample paths of the rBergomi model, a recently proposed stock price model used in mathematical finance. We contextualise this as a calibration problem, thereby providing a very practical and useful application.

Suggested Citation

  • Henry Stone, 2018. "Calibrating rough volatility models: a convolutional neural network approach," Papers 1812.05315, arXiv.org, revised Jul 2019.
  • Handle: RePEc:arx:papers:1812.05315
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.05315
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoine Jacquier & Mikko S. Pakkanen & Henry Stone, 2017. "Pathwise large deviations for the Rough Bergomi model," Papers 1706.05291, arXiv.org, revised Dec 2018.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    3. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    4. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    5. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch, 2020. "Solving path dependent PDEs with LSTM networks and path signatures," Papers 2011.10630, arXiv.org.
    2. Alessandro Gnoatto & Martino Grasselli & Eckhard Platen, 2022. "Calibration to FX triangles of the 4/2 model under the benchmark approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 1-34, June.
    3. Henrique Guerreiro & Jo~ao Guerra, 2021. "Least squares Monte Carlo methods in stochastic Volterra rough volatility models," Papers 2105.04511, arXiv.org.
    4. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    5. Henrique Guerreiro & João Guerra, 2021. "Least squares Monte Carlo methods in stochastic Volterra rough volatility models," Working Papers REM 2021/0176, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    2. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
    3. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    4. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
    5. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    6. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    7. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    8. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    9. Paul Hager & Eyal Neuman, 2020. "The Multiplicative Chaos of $H=0$ Fractional Brownian Fields," Papers 2008.01385, arXiv.org.
    10. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795, arXiv.org.
    11. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    12. Masaaki Fukasawa, 2020. "Volatility has to be rough," Papers 2002.09215, arXiv.org.
    13. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    14. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    15. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    16. Zhu, Qinwen & Diao, Xundi & Wu, Chongfeng, 2023. "Volatility forecast with the regularity modifications," Finance Research Letters, Elsevier, vol. 58(PA).
    17. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    18. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    19. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    20. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.05315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.