IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.11618.html
   My bibliography  Save this paper

Kalman filter demystified: from intuition to probabilistic graphical model to real case in financial markets

Author

Listed:
  • Eric Benhamou

Abstract

In this paper, we revisit the Kalman filter theory. After giving the intuition on a simplified financial markets example, we revisit the maths underlying it. We then show that Kalman filter can be presented in a very different fashion using graphical models. This enables us to establish the connection between Kalman filter and Hidden Markov Models. We then look at their application in financial markets and provide various intuitions in terms of their applicability for complex systems such as financial markets. Although this paper has been written more like a self contained work connecting Kalman filter to Hidden Markov Models and hence revisiting well known and establish results, it contains new results and brings additional contributions to the field. First, leveraging on the link between Kalman filter and HMM, it gives new algorithms for inference for extended Kalman filters. Second, it presents an alternative to the traditional estimation of parameters using EM algorithm thanks to the usage of CMA-ES optimization. Third, it examines the application of Kalman filter and its Hidden Markov models version to financial markets, providing various dynamics assumptions and tests. We conclude by connecting Kalman filter approach to trend following technical analysis system and showing their superior performances for trend following detection.

Suggested Citation

  • Eric Benhamou, 2018. "Kalman filter demystified: from intuition to probabilistic graphical model to real case in financial markets," Papers 1811.11618, arXiv.org, revised Dec 2018.
  • Handle: RePEc:arx:papers:1811.11618
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.11618
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Delphine Lautier & Alain Galli, 2004. "Simple and extended Kalman filters: an application to term structures of commodity prices," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 963-973.
    2. Delphine Lautier, 2004. "Simple and extended Kalman filters : an application to term structures of commodity prices," Post-Print halshs-00152998, HAL.
    3. Delphine Lautier & Alireza Javaheri & Alain Galli, 2003. "Filtering in finance," Post-Print halshs-00153006, HAL.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    5. repec:dau:papers:123456789/871 is not listed on IDEAS
    6. Delphine Lautier & A. Galli, 2004. "Simple and extended Kalman filters : an application to term structures of commodity prices," Post-Print halshs-00136139, HAL.
    7. repec:dau:papers:123456789/2437 is not listed on IDEAS
    8. Delphine Lautier & Alain Galli, 2004. "Simple and extended Kalman filters : an application to term structure of commodity prices," Post-Print halshs-00153042, HAL.
    9. repec:dau:papers:123456789/876 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Working Papers hal-03016486, HAL.
    2. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2021. "A Stationary Kyle Setup: Microfounding propagator models," Post-Print hal-03016486, HAL.
    3. Michele Vodret & Iacopo Mastromatteo & Bence T'oth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Papers 2011.10242, arXiv.org, revised Feb 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Aspinall & Adrian Gepp & Geoff Harris & Simone Kelly & Colette Southam & Bruce Vanstone, 2021. "Estimation of a term structure model of carbon prices through state space methods: The European Union emissions trading scheme," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(2), pages 3797-3819, June.
    2. Lubnau, Thorben & Todorova, Neda, 2015. "Trading on mean-reversion in energy futures markets," Energy Economics, Elsevier, vol. 51(C), pages 312-319.
    3. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    4. Lubnau, Thorben, 2014. "Spread trading strategies in the crude oil futures market," Discussion Papers 353, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    5. Haas, Christian & Budin, Constantin & d’Arcy, Anne, 2024. "How to select oil price prediction models — The effect of statistical and financial performance metrics and sentiment scores," Energy Economics, Elsevier, vol. 133(C).
    6. Fernando Antonio Lucena Aiube & Ariel Levy, 2019. "Recent movement of oil prices and future scenarios [Movimentos recentes dos preços do petróleo e os cenários futuros]," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 29(1), pages 223-248, January-A.
    7. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    8. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    9. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    10. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    11. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    12. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    13. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    14. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    15. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    16. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    17. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    18. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    19. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    20. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    21. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    22. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.11618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.