IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v14y2004i13p963-973.html
   My bibliography  Save this article

Simple and extended Kalman filters: an application to term structures of commodity prices

Author

Listed:
  • Delphine Lautier
  • Alain Galli

Abstract

This article presents and compares two different Kalman filters. These methods provide a very interesting way to cope with the presence of non-observable variables, which is a frequent problem in finance. They are also very fast even in the presence of a large information volume. The first filter presented, which corresponds to the simplest version of a Kalman filter, can be used solely in the case of linear models. The second filter - the extended one - is a generalization of the first one, and it enables one to deal with non-linear models. However, it also introduces an approximation in the analysis, whose possible influence must be appreciated. The principles of the method and its advantages are first presented. It is then explained why it is interesting in the case of term structure models of commodity prices. Choosing a well-known term structure model, practical implementation problems are discussed and tested. Finally, in order to appreciate the impact of the approximation introduced for non-linear models, the two filters are compared.

Suggested Citation

  • Delphine Lautier & Alain Galli, 2004. "Simple and extended Kalman filters: an application to term structures of commodity prices," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 963-973.
  • Handle: RePEc:taf:apfiec:v:14:y:2004:i:13:p:963-973
    DOI: 10.1080/0960310042000233629
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0960310042000233629
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0960310042000233629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babbs, Simon H. & Nowman, K. Ben, 1999. "Kalman Filtering of Generalized Vasicek Term Structure Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 115-130, March.
    2. repec:dau:papers:123456789/871 is not listed on IDEAS
    3. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    4. Delphine Lautier & Alireza Javaheri & Alain Galli, 2003. "Filtering in finance," Post-Print halshs-00153006, HAL.
    5. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    6. Hilliard, Jimmy E. & Reis, Jorge, 1998. "Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 61-86, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haas, Christian & Budin, Constantin & d’Arcy, Anne, 2024. "How to select oil price prediction models — The effect of statistical and financial performance metrics and sentiment scores," Energy Economics, Elsevier, vol. 133(C).
    2. Eric Benhamou, 2018. "Kalman filter demystified: from intuition to probabilistic graphical model to real case in financial markets," Papers 1811.11618, arXiv.org, revised Dec 2018.
    3. Lubnau, Thorben & Todorova, Neda, 2015. "Trading on mean-reversion in energy futures markets," Energy Economics, Elsevier, vol. 51(C), pages 312-319.
    4. Thomas Aspinall & Adrian Gepp & Geoff Harris & Simone Kelly & Colette Southam & Bruce Vanstone, 2021. "Estimation of a term structure model of carbon prices through state space methods: The European Union emissions trading scheme," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(2), pages 3797-3819, June.
    5. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    6. Lubnau, Thorben, 2014. "Spread trading strategies in the crude oil futures market," Discussion Papers 353, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/1245 is not listed on IDEAS
    2. repec:dau:papers:123456789/876 is not listed on IDEAS
    3. Fernando Antonio Lucena Aiube & Ariel Levy, 2019. "Recent movement of oil prices and future scenarios [Movimentos recentes dos preços do petróleo e os cenários futuros]," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 29(1), pages 223-248, January-A.
    4. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    5. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    6. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    7. repec:dau:papers:123456789/5470 is not listed on IDEAS
    8. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    9. Michael Prange & William J. Bailey & Benoit Couët & Hugues Djikpesse & Margaret Armstrong & Alain Galli & David Wilkinson, 2008. "Valuing Future Information Under Uncertainty Using Polynomial Chaos," Decision Analysis, INFORMS, vol. 5(3), pages 140-156, September.
    10. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    11. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    12. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    13. Elliott, Robert J. & Hyndman, Cody. B., 2007. "Parameter estimation in commodity markets: A filtering approach," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2350-2373, July.
    14. Delphine Lautier & Alain Galli, 2010. "Dynamic hedging strategies: an application to the crude oil market," Post-Print halshs-00640802, HAL.
    15. repec:dau:papers:123456789/9318 is not listed on IDEAS
    16. Rodriguez, J.C., 2007. "A Preference-Free Formula to Value Commodity Derivatives," Discussion Paper 2007-92, Tilburg University, Center for Economic Research.
    17. Bryant, Henry L. & Haigh, Michael S., 2003. "Comparing The Performances Of The Partial Equilibrium And Time-Series Approaches To Hedging," Working Papers 28580, University of Maryland, Department of Agricultural and Resource Economics.
    18. repec:dau:papers:123456789/6782 is not listed on IDEAS
    19. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    20. Ma, Zonggang & Ma, Chaoqun & Wu, Zhijian, 2020. "Closed-form analytical solutions for options on agricultural futures with seasonality and stochastic convenience yield," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    21. Juri Hinz & Tanya Tarnopolskaya & Jeremy Yee, 2020. "Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations," Annals of Operations Research, Springer, vol. 286(1), pages 583-615, March.
    22. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    23. Gareth W. Peters & Mark Briers & Pavel V. Shevchenko & Arnaud Doucet, 2011. "Calibration and filtering for multi factor commodity models with seasonality: incorporating panel data from futures contracts," Papers 1105.5850, arXiv.org.
    24. Zonggang Ma & Chaoqun Ma & Zhijian Wu, 2022. "Pricing commodity-linked bonds with stochastic convenience yield, interest rate and counterparty credit risk: application of Mellin transform methods," Review of Derivatives Research, Springer, vol. 25(1), pages 47-91, April.
    25. Henry L. Bryant & Michael S. Haigh, 2005. "Derivative pricing model and time‐series approaches to hedging: A comparison," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(7), pages 613-641, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:14:y:2004:i:13:p:963-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.