IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.06077.html
   My bibliography  Save this paper

Modeling Nelson-Siegel Yield Curve using Bayesian Approach

Author

Listed:
  • Sourish Das

Abstract

Yield curve modeling is an essential problem in finance. In this work, we explore the use of Bayesian statistical methods in conjunction with Nelson-Siegel model. We present the hierarchical Bayesian model for the parameters of the Nelson-Siegel yield function. We implement the MAP estimates via BFGS algorithm in rstan. The Bayesian analysis relies on the Monte Carlo simulation method. We perform the Hamiltonian Monte Carlo (HMC), using the rstan package. As a by-product of the HMC, we can simulate the Monte Carlo price of a Bond, and it helps us to identify if the bond is over-valued or under-valued. We demonstrate the process with an experiment and US Treasury's yield curve data. One of the interesting observation of the experiment is that there is a strong negative correlation between the price and long-term effect of yield. However, the relationship between the short-term interest rate effect and the value of the bond is weakly positive. This is because posterior analysis shows that the short-term effect and the long-term effect are negatively correlated.

Suggested Citation

  • Sourish Das, 2018. "Modeling Nelson-Siegel Yield Curve using Bayesian Approach," Papers 1809.06077, arXiv.org, revised Oct 2018.
  • Handle: RePEc:arx:papers:1809.06077
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.06077
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    2. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2010. "Bayesian extensions to Diebold-Li term structure model," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 342-350, December.
    3. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    4. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    5. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    6. Das, Sourish & Dey, Dipak K., 2006. "On Bayesian Analysis of Generalized Linear Models Using the Jacobian Technique," The American Statistician, American Statistical Association, vol. 60, pages 264-268, August.
    7. Das, Sourish & Dey, Dipak K., 2010. "On Bayesian inference for generalized multivariate gamma distribution," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1492-1499, October.
    8. Sourish Das & Dipak K. Dey, 2013. "On Dynamic Generalized Linear Models with Applications," Methodology and Computing in Applied Probability, Springer, vol. 15(2), pages 407-421, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahidin Jeleskovic & Anastasios Demertzidis, 2018. "Comparing different methods for the estimation of interbank intraday yield curves," MAGKS Papers on Economics 201839, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    2. Márcio Poletti Laurini & Armênio Westin Neto, 2014. "Arbitrage in the Term Structure of Interest Rates: a Bayesian Approach," International Econometric Review (IER), Econometric Research Association, vol. 6(2), pages 77-99, September.
    3. repec:erh:journl:v:6:y:2014:i:2:p:78-100 is not listed on IDEAS
    4. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    5. Hong, Zhiwu & Niu, Linlin & Zhang, Chen, 2022. "Affine arbitrage-free yield net models with application to the euro debt crisis," Journal of Econometrics, Elsevier, vol. 230(1), pages 201-220.
    6. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    7. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    8. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    9. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
    10. Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
    11. Jiazi Chen & Zhiwu Hong & Linlin Niu, 2022. "Forecasting Interest Rates with Shifting Endpoints: The Role of the Demographic Age Structure," Working Papers 2022-06-25, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    12. Chen, Ying & Niu, Linlin & Chen, Ray-Bing & He, Qiang, 2019. "Sparse-Group Independent Component Analysis with application to yield curves prediction," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 76-89.
    13. Erhard RESCHENHOFER & Thomas STARK, 2019. "Forecasting the Yield Curve with Dynamic Factors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 101-113, March.
    14. Ying Chen & Bo Li & Linlin Niu, 2013. "A Local Vector Autoregressive Framework and its Applications to Multivariate Time Series Monitoring and Forecasting," Working Papers 2013-12-05, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    15. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the term structure of option implied volatility: The power of an adaptive method," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
    16. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    17. Raviv, Eran, 2015. "Prediction bias correction for dynamic term structure models," Economics Letters, Elsevier, vol. 129(C), pages 112-115.
    18. Renata Tavanielli & Márcio Laurini, 2023. "Yield Curve Models with Regime Changes: An Analysis for the Brazilian Interest Rate Market," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
    19. Choi, Ahjin & Kang, Kyu Ho, 2023. "Modeling the time-varying dynamic term structure of interest rates," Journal of Banking & Finance, Elsevier, vol. 153(C).
    20. M�rcio Poletti Laurini, 2014. "Dynamic functional data analysis with non-parametric state space models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 142-163, January.
    21. Aryo Sasongko & Cynthia Afriani Utama & Buddi Wibowo & Zaäfri Ananto Husodo, 2019. "Modifying Hybrid Optimisation Algorithms to Construct Spot Term Structure of Interest Rates and Proposing a Standardised Assessment," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 957-1003, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.06077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.