IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.00656.html
   My bibliography  Save this paper

Asian Option Pricing under Uncertain Volatility Model

Author

Listed:
  • Yuecai Han
  • Chunyang Liu

Abstract

In this paper, we study the asymptotic behavior of Asian option prices in the worst case scenario under an uncertain volatility model. We give a procedure to approximate the Asian option prices with a small volatility interval. By imposing additional conditions on the boundary condition and cutting the obtained Black-Scholes-Barenblatt equation into two Black-Scholes-like equations, we obtain an approximation method to solve the fully nonlinear PDE.

Suggested Citation

  • Yuecai Han & Chunyang Liu, 2018. "Asian Option Pricing under Uncertain Volatility Model," Papers 1808.00656, arXiv.org.
  • Handle: RePEc:arx:papers:1808.00656
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.00656
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    6. Dokuchaev, Nikolai G. & Savkin, Andrey V., 1998. "The pricing of options in a financial market model with transaction costs and uncertain volatility," Journal of Multinational Financial Management, Elsevier, vol. 8(2-3), pages 353-364, September.
    7. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    8. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    9. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Pirjol, 2024. "Subleading correction to the Asian options volatility in the Black-Scholes model," Papers 2407.05142, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    2. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    3. Patrick Beissner, 2019. "Coherent-Price Systems and Uncertainty-Neutral Valuation," Risks, MDPI, vol. 7(3), pages 1-18, September.
    4. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    6. Paolo Foschi & Andrea Pascucci, 2008. "Path dependent volatility," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(1), pages 13-32, May.
    7. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, October.
    8. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    9. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    10. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    11. Jean-Pierre Fouque & Ning Ning, 2017. "Uncertain Volatility Models with Stochastic Bounds," Papers 1702.05036, arXiv.org.
    12. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    13. Shige Peng & Shuzhen Yang, 2020. "Distributional uncertainty of the financial time series measured by G-expectation," Papers 2011.09226, arXiv.org, revised Jul 2021.
    14. Kaj Nystrom & Mikko Parviainen, 2014. "Tug-of-war, market manipulation and option pricing," Papers 1410.1664, arXiv.org.
    15. Yan Yan & Zhewen Liao & Xiaosong Chen, 2018. "Fixed-income securities: bibliometric review with network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1615-1640, September.
    16. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    17. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    18. Timothy C. Johnson, 2012. "Ethics and Finance: the role of mathematics," Papers 1210.5390, arXiv.org.
    19. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    20. Simone Scotti, 2012. "Asset Pricing under uncertainty," Papers 1203.5664, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.00656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.