IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v16y2009i2p318-329.html
   My bibliography  Save this article

Stock and bond market interactions with level and asymmetry dynamics: An out-of-sample application

Author

Listed:
  • de Goeij, Peter
  • Marquering, Wessel

Abstract

We model the dynamic interaction between stock and bond returns using a multivariate model with level effects and asymmetries in conditional volatility. We examine the out-of-sample performance using daily returns on the S&P 500 index and 10Â year Treasury bond. We find evidence for significant (cross-) asymmetries in the conditional volatility and level effects in bond returns. The out-of-sample covariance matrix forecasts of the model imply that an investor is willing to pay between 129 and 820 basis points per year for using a dynamic trading strategy instead of a passive strategy.

Suggested Citation

  • de Goeij, Peter & Marquering, Wessel, 2009. "Stock and bond market interactions with level and asymmetry dynamics: An out-of-sample application," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 318-329, March.
  • Handle: RePEc:eee:empfin:v:16:y:2009:i:2:p:318-329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(08)00073-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Christiansen, Charlotte, 2005. "Multivariate term structure models with level and heteroskedasticity effects," Journal of Banking & Finance, Elsevier, vol. 29(5), pages 1037-1057, May.
    3. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    4. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    5. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
    8. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. "Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    9. Peter de Goeij, 2004. "Modeling the Conditional Covariance Between Stock and Bond Returns: A Multivariate GARCH Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 531-564.
    10. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    11. Bodurtha, James N, Jr & Mark, Nelson C, 1991. "Testing the CAPM with Time-Varying Risks and Returns," Journal of Finance, American Finance Association, vol. 46(4), pages 1485-1505, September.
    12. Miguel A. Ferreira, 2005. "Evaluating Interest Rate Covariance Models Within a Value-at-Risk Framework," Journal of Financial Econometrics, Oxford University Press, vol. 3(1), pages 126-168.
    13. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    14. David E. Rapach & Mark E. Wohar, 2006. "Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 238-274.
    15. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    16. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    17. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    18. Jones, Charles M. & Lamont, Owen & Lumsdaine, Robin L., 1998. "Macroeconomic news and bond market volatility," Journal of Financial Economics, Elsevier, vol. 47(3), pages 315-337, March.
    19. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    20. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    21. Connolly, Robert & Stivers, Chris & Sun, Licheng, 2005. "Stock Market Uncertainty and the Stock-Bond Return Relation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(1), pages 161-194, March.
    22. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    23. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    24. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    25. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    26. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    27. Harvey, Campbell R., 1989. "Time-varying conditional covariances in tests of asset pricing models," Journal of Financial Economics, Elsevier, vol. 24(2), pages 289-317.
    28. de Goeij, P. C. & Marquering, W., 2004. "Modeling the conditional covariance between stock and bond returns : A multivariate GARCH approach," Other publications TiSEM 94fe5ada-715a-4339-b94c-f, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    2. Kaczmarek, Tomasz & Będowska-Sójka, Barbara & Grobelny, Przemysław & Perez, Katarzyna, 2022. "False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network," Research in International Business and Finance, Elsevier, vol. 60(C).
    3. Miralles-Quirós, José Luis & Miralles-Quirós, María del Mar, 2017. "The Copula ADCC-GARCH model can help PIIGS to fly," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 1-12.
    4. Mitica Pepi, 2022. "The Impact of the Global Pandemic Crisis on East and Central EU Stock Markets," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 963-968, September.
    5. Yu‐Sheng Lai, 2022. "High‐frequency data and stock–bond investing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1623-1638, December.
    6. Chuang, Chung-Chu & Wang, Yi-Hsien & Yeh, Tsai-Jung & Chuang, Shuo-Li, 2014. "Backtesting VaR in consideration of the higher moments of the distribution for minimum-variance hedging portfolios," Economic Modelling, Elsevier, vol. 42(C), pages 15-19.
    7. Wu, Chih-Chiang & Liang, Shin-Shun, 2011. "The economic value of range-based covariance between stock and bond returns with dynamic copulas," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 711-727, September.
    8. Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
    9. repec:dau:papers:123456789/6804 is not listed on IDEAS
    10. María del Mar Miralles-Quirós & José Luis Miralles-Quirós, 2017. "Improving Diversification Opportunities for Socially Responsible Investors," Journal of Business Ethics, Springer, vol. 140(2), pages 339-351, January.
    11. Banerjee, Ameet Kumar, 2021. "Futures market and the contagion effect of COVID-19 syndrome," Finance Research Letters, Elsevier, vol. 43(C).
    12. Anghelache, Gabriela Victoria & Kralik, Lorand Istvan & Acatrinei, Marius & Pete, Stefan, 2014. "Influence of the EU Accession Process and the Global Crisis on the CEE Stock Markets: A Multivariate Correlation Analysis," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 35-52, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Goeij, P. C. & Marquering, W., 2009. "Stock and bond market interactions with level and asymmetry dynamics : An out-of-sample application," Other publications TiSEM fa1d33b9-7e68-4e15-b211-e, Tilburg University, School of Economics and Management.
    2. de Goeij, P. C. & Marquering, W., 2004. "Modeling the conditional covariance between stock and bond returns : A multivariate GARCH approach," Other publications TiSEM 94fe5ada-715a-4339-b94c-f, Tilburg University, School of Economics and Management.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    8. Kirt Butler & Katsushi Okada, 2009. "The relative contribution of conditional mean and volatility in bivariate returns to international stock market indices," Applied Financial Economics, Taylor & Francis Journals, vol. 19(1), pages 1-15.
    9. Duong Le, 2017. "Relationship between Crude Oil Prices and the U.S. Dollar Exchange Rates: Constant or Time-varying?," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(5), pages 1-6.
    10. Helena Chuliá & Hipòlit Torró, 2008. "The economic value of volatility transmission between the stock and bond markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1066-1094, November.
    11. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    12. Maria Kasch & Massimiliano Caporin, 2013. "Volatility Threshold Dynamic Conditional Correlations: An International Analysis," Journal of Financial Econometrics, Oxford University Press, vol. 11(4), pages 706-742, September.
    13. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    14. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    15. Christiansen, Charlotte, 2005. "Multivariate term structure models with level and heteroskedasticity effects," Journal of Banking & Finance, Elsevier, vol. 29(5), pages 1037-1057, May.
    16. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    17. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
    18. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    19. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
    20. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:16:y:2009:i:2:p:318-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.