IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i1p31-d722167.html
   My bibliography  Save this article

Time Evolution of Market Efficiency and Multifractality of the Japanese Stock Market

Author

Listed:
  • Tetsuya Takaishi

    (Hiroshima University of Economics, Hiroshima 731-0192, Japan)

Abstract

This study investigates the time evolution of market efficiency in the Japanese stock markets, considering three indices: Tokyo Stock Price Index (TOPIX), Tokyo Stock Exchange Second Section Index, and TOPIX-Small. The Hurst exponent reveals that the Japanese markets are inefficient in their early stages and improve gradually. TOPIX and TOPIX-Small showed an anti-persistence around the year 2000, which still persists. The degree of multifractality varies over time and does not show that the Japanese markets are permanently efficient. The multifractal properties of the Japanese markets changed considerably around the year 2000; this may have been caused by the complete migration from the stock trading floor to the Tokyo Stock Exchange’s computer trading system and the financial system reform, also known as the “Japanese Big Bang”.

Suggested Citation

  • Tetsuya Takaishi, 2022. "Time Evolution of Market Efficiency and Multifractality of the Japanese Stock Market," JRFM, MDPI, vol. 15(1), pages 1-12, January.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:1:p:31-:d:722167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/1/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/1/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    2. Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
    3. Campbell, John Y. & Lo, Andrew W. & MacKinlay, A. Craig & Whitelaw, Robert F., 1998. "The Econometrics Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(4), pages 559-562, December.
    4. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    5. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birau Ramona & Filip Robert Dorin & Lupu (Filip) Gabriela Ana Maria & Simion Mircea Laurentiu & Florescu Ion, 2023. "An Empirical Analysis Regarding The Behavior Of The Asian Stock Markets Under The Impact Of Turbulent Events: A Case Study For Japan," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 90-98, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabur Mollah & Asma Mobarek, 2009. "Market volatility across countries – evidence from international markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 257-274, October.
    2. Stavros Degiannakis, George Filis, and Renatas Kizys, 2014. "The Effects of Oil Price Shocks on Stock Market Volatility: Evidence from European Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    4. Juan José Echavarría & Mauricio Villamizar & Diego Vásquez, 2010. "Impacto de las intervenciones cambiarias sobre el nivel y la volatilidad de la tasa de cambio en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 28(62), pages 12-69, June.
    5. David G. McMillan & Pako Thupayagale, 2009. "The efficiency of African equity markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 275-292, October.
    6. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    7. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    8. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    9. Meriem Rjiba & Michail Tsagris & Hedi Mhalla, 2015. "Bootstrap for Value at Risk Prediction," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(6), pages 362-371.
    10. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    11. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    12. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    13. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
    14. Juan J. Echavarría & Luis F. Melo-Velandia & Mauricio Villamizar-Villegas, 2018. "The impact of pre-announced day-to-day interventions on the Colombian exchange rate," Empirical Economics, Springer, vol. 55(3), pages 1319-1336, November.
    15. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
    16. Santiago Velásquez & Juho Kanniainen & Saku Mäkinen & Jaakko Valli, 2018. "Layoff announcements and intra-day market reactions," Review of Managerial Science, Springer, vol. 12(1), pages 203-228, January.
    17. Adrian Cantemir Calin & Tiberiu Diaconescu & Oana – Cristina Popovici, 2014. "Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 42-47, June.
    18. Amira Akl Ahmed & Doaa Akl Ahmed, 2016. "Modelling Conditional Volatility and Downside Risk for Istanbul Stock Exchange," Working Papers 1028, Economic Research Forum, revised Jul 2016.
    19. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    20. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:1:p:31-:d:722167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.