IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v8y2020i2p159-169n5.html
   My bibliography  Save this article

PMCMC for Term Structure of Interest Rates under Markov Regime Switching and Jumps

Author

Listed:
  • Liu Xiangdong

    (Department of Statistics, Jinan University, Guangzhou510632, China)

  • Li Xianglong

    (Department of Statistics, Jinan University, Guangzhou510632, China)

  • Zheng Shaozhi

    (Department of Statistics, Jinan University, Guangzhou510632, China)

  • Qian Hangyong

    (Department of Statistics, Jinan University, Guangzhou510632, China)

Abstract

A parameter estimation method, called PMCMC in this paper, is proposed to estimate a continuous-time model of the term structure of interests under Markov regime switching and jumps. There is a closed form solution to term structure of interest rates under Markov regime. However, the model is extended to be a CKLS model with non-closed form solutions which is a typical nonlinear and non-Gaussian state-space model(SSM) in the case of adding jumps. Although the difficulty of parameter estimation greatly prevents from researching models, we prove that the nonlinear and non-Gaussian state-space model has better performances in studying volatility. The method proposed in this paper will be implemented in simulation and empirical study for SHIBOR. Empirical results illustrate that the PMCMC algorithm has powerful advantages in tackling the models.

Suggested Citation

  • Liu Xiangdong & Li Xianglong & Zheng Shaozhi & Qian Hangyong, 2020. "PMCMC for Term Structure of Interest Rates under Markov Regime Switching and Jumps," Journal of Systems Science and Information, De Gruyter, vol. 8(2), pages 159-169, April.
  • Handle: RePEc:bpj:jossai:v:8:y:2020:i:2:p:159-169:n:5
    DOI: 10.21078/JSSI-2020-159-11
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2020-159-11
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2020-159-11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    2. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    3. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    4. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    5. Shu Wu & Yong Zeng, 2005. "A General Equilibrium Model Of The Term Structure Of Interest Rates Under Regime-Switching Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(07), pages 839-869.
    6. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    7. Wu, Shu & Zeng, Yong, 2006. "The term structure of interest rates under regime shifts and jumps," Economics Letters, Elsevier, vol. 93(2), pages 215-221, November.
    8. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    9. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    10. Yong Zeng, 2003. "A Partially Observed Model for Micromovement of Asset Prices with Bayes Estimation via Filtering," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 411-444, July.
    11. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    12. Geweke, John & Tanizaki, Hisashi, 2001. "Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 151-170, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    4. Turnbull, Kathryn & Nemeth, Christopher & Nunes, Matthew & McCormick, Tyler, 2023. "Sequential estimation of temporally evolving latent space network models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    5. Hall, Jamie & Pitt, Michael K. & Kohn, Robert, 2014. "Bayesian inference for nonlinear structural time series models," Journal of Econometrics, Elsevier, vol. 179(2), pages 99-111.
    6. Arnaud Doucet & Neil Shephard, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Papers 2012-W05, Economics Group, Nuffield College, University of Oxford.
    7. S Borağan Aruoba & Pablo Cuba-Borda & Frank Schorfheide, 2018. "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(1), pages 87-118.
    8. Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
    9. Delle Monache, Davide & Petrella, Ivan, 2019. "Efficient matrix approach for classical inference in state space models," Economics Letters, Elsevier, vol. 181(C), pages 22-27.
    10. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    11. Christopher J. Gust & Edward P. Herbst & J. David López-Salido & Matthew E. Smith, 2012. "The Empirical Implications of the Interest-Rate Lower Bound," Finance and Economics Discussion Series 2012-83, Board of Governors of the Federal Reserve System (U.S.).
    12. Takefumi Yamazaki, 2018. "Financial friction sources in emerging economies: Structural estimation of sovereign default models," Discussion papers ron303, Policy Research Institute, Ministry of Finance Japan.
    13. Andreasen, Martin M., 2011. "Non-linear DSGE models and the optimized central difference particle filter," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1671-1695, October.
    14. Christopher Gust & Edward Herbst & David López-Salido & Matthew E. Smith, 2017. "The Empirical Implications of the Interest-Rate Lower Bound," American Economic Review, American Economic Association, vol. 107(7), pages 1971-2006, July.
    15. Ignatieva, Katja & Wong, Patrick, 2022. "Modelling high frequency crude oil dynamics using affine and non-affine jump–diffusion models," Energy Economics, Elsevier, vol. 108(C).
    16. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    17. Manuel Gonzalez-Astudillo, 2013. "Monetary-fiscal policy interactions: interdependent policy rule coefficients," Finance and Economics Discussion Series 2013-58, Board of Governors of the Federal Reserve System (U.S.).
    18. Iiboshi, Hirokuni & Shintani, Mototsugu, 2016. "Zero interest rate policy and asymmetric price adjustment in Japan: an empirical analysis of a nonlinear DSGE model," MPRA Paper 93868, University Library of Munich, Germany.
    19. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    20. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:8:y:2020:i:2:p:159-169:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.