IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2010-22.html
   My bibliography  Save this paper

On Particle Learning

Author

Listed:
  • Nicolas Chopin

    (Crest)

  • Alessandra Iacobucci

    (Crest)

  • Jean-Michel Marin

    (Crest)

  • Kerrie L. Mengersen

    (Crest)

  • Christian P. Robert

    (Crest)

  • Robin Ryder

    (Crest)

  • Christian Schafer

    (Crest)

Abstract

This document is the aggregation of several discussions of Lopes et al. (2010) we submitted tothe proceedings of the Ninth Valencia Meeting, held in Benidorm, Spain, on June 3–8, 2010, inconjunction with Hedibert Lopes’ talk at this meeting. The main point in those discussions is thepotential for degeneracy in the particle learning methodology, related with the exponential forgettingof the past simulations. We illustrate the resulting difficulties in the case of mixtures.

Suggested Citation

  • Nicolas Chopin & Alessandra Iacobucci & Jean-Michel Marin & Kerrie L. Mengersen & Christian P. Robert & Robin Ryder & Christian Schafer, 2010. "On Particle Learning," Working Papers 2010-22, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2010-22
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2010-22.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Nicolas Chopin & Christian P. Robert, 2010. "Properties of nested sampling," Biometrika, Biometrika Trust, vol. 97(3), pages 741-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Audronė Virbickaitė & Hedibert F. Lopes & M. Concepción Ausín & Pedro Galeano, 2019. "Particle learning for Bayesian semi-parametric stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 38(9), pages 1007-1023, October.
    2. Karol Gellert & Erik Schlögl, 2021. "Parameter Learning and Change Detection Using a Particle Filter with Accelerated Adaptation," Risks, MDPI, vol. 9(12), pages 1-18, December.
    3. Chen, Ji & Yang, Xinglin & Liu, Xiliang, 2022. "Learning, disagreement and inflation forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    4. Audrone Virbickaite & Hedibert F. Lopes, 2018. "Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model," DEA Working Papers 89, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    5. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    2. Christian P. Robert, 2013. "Bayesian Computational Tools," Working Papers 2013-45, Center for Research in Economics and Statistics.
    3. Christian P. Robert & Gareth Roberts, 2021. "Rao–Blackwellisation in the Markov Chain Monte Carlo Era," International Statistical Review, International Statistical Institute, vol. 89(2), pages 237-249, August.
    4. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    5. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    6. Fleischhacker, Jan, 2024. "Fiscal policy and the business cycle: An argument for non-linear policy rules," MPRA Paper 122497, University Library of Munich, Germany.
    7. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    8. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    9. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
    10. Saifuddin Syed & Alexandre Bouchard‐Côté & George Deligiannidis & Arnaud Doucet, 2022. "Non‐reversible parallel tempering: A scalable highly parallel MCMC scheme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 321-350, April.
    11. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    12. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    13. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    14. Beirne, John & Villafuerte, James & Zhang, Bryan (ed.), 2022. "Fintech and COVID-19: Impacts, Challenges, and Policy Priorities for Asia," ADBI Books, Asian Development Bank Institute, number 29, Décembre.
    15. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    16. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    17. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    18. James Hodgson & Adam M. Johansen & Murray Pollock, 2022. "Unbiased Simulation of Rare Events in Continuous Time," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2123-2148, September.
    19. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    20. Ettmeier, Stephanie & Kriwoluzky, Alexander, 2019. "Active, or passive? Revisiting the role of fiscal policy in the Great Inflation," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203609, Verein für Socialpolitik / German Economic Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2010-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.