IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v43y2011i12p819-839.html
   My bibliography  Save this article

Risk-adjusted budget allocation models with application in homeland security

Author

Listed:
  • Jian Hu
  • Tito Homem-de-Mello
  • Sanjay Mehrotra

Abstract

This article presents and studies models for multi-criteria budget allocation problems under uncertainty. The proposed models incorporate uncertainties in decision maker's weights using a robust weighted sum approach. The risk averseness of the decision maker in satisfying random risk-related constraints is ensured by using stochastic dominance. A sample average approximation approach together with a cutting surface method is used to solve this model. An analysis for the computation of statistical lower and upper bounds is also given. The proposed models are used to study the budget allocation to ten urban areas in the United States under the Urban Areas Security Initiative. Here the decision maker considers property losses, fatalities, air departures, and average daily bridge traffic as separate criteria. The properties of the proposed modeling and solution methodology are discussed using a RAND Corporation–proposed allocation policy and the current government budget allocation as two benchmarks. The budget results are discussed under several parameter scenarios.

Suggested Citation

  • Jian Hu & Tito Homem-de-Mello & Sanjay Mehrotra, 2011. "Risk-adjusted budget allocation models with application in homeland security," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 819-839.
  • Handle: RePEc:taf:uiiexx:v:43:y:2011:i:12:p:819-839
    DOI: 10.1080/0740817X.2011.578610
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2011.578610
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2011.578610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Hu & Sanjay Mehrotra, 2012. "Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations," Operations Research, INFORMS, vol. 60(4), pages 936-953, August.
    2. Leilei Zhang & Tito Homem-de-Mello, 2017. "An Optimal Path Model for the Risk-Averse Traveler," Transportation Science, INFORMS, vol. 51(2), pages 518-535, May.
    3. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    4. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    5. Crespi, Giovanni P. & Kuroiwa, Daishi & Rocca, Matteo, 2018. "Robust optimization: Sensitivity to uncertainty in scalar and vector cases, with applications," Operations Research Perspectives, Elsevier, vol. 5(C), pages 113-119.
    6. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    7. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    8. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    9. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    10. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    11. Hu, Jian & Homem-de-Mello, Tito & Mehrotra, Sanjay, 2014. "Stochastically weighted stochastic dominance concepts with an application in capital budgeting," European Journal of Operational Research, Elsevier, vol. 232(3), pages 572-583.
    12. Xiao Liu & Simge Küçükyavuz & Nilay Noyan, 2017. "Robust multicriteria risk-averse stochastic programming models," Annals of Operations Research, Springer, vol. 259(1), pages 259-294, December.
    13. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:43:y:2011:i:12:p:819-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.