IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v43y2018i3p813-837.html
   My bibliography  Save this article

Liquidity, Risk Measures, and Concentration of Measure

Author

Listed:
  • Daniel Lacker

    (Columbia University, New York, New York 10027)

Abstract

This paper studies curves of the form ( ρ ( λX )) λ ≥0 , called risk profiles, where ρ is a convex risk measure and X a random variable. Financially, this captures the sensitivity of risk to the size of the investment in X , which the original axiomatic foundations of convex risk measures suggest to interpret as liquidity risk. The shape of a risk profile is intimately linked with the tail behavior of X for some notable classes of risk measures, namely shortfall risk measures and optimized certainty equivalents, and shares many useful features with cumulant generating functions. Exploiting this link leads to tractable necessary and sufficient conditions for pointwise bounds on risk profiles, which we call concentration inequalities. These inequalities admit useful dual representations related to transport inequalities, and this leads to efficient uniform bounds for risk profiles for large classes of X . Several interesting mathematical results emerge from this analysis, including a new perspective on nonexponential concentration estimates and some peculiar characterizations of classical transport inequalities. Lastly, the analysis is deepened by means of a surprising connection between time consistency properties of law invariant risk measures and the tensorization of concentration inequalities.

Suggested Citation

  • Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
  • Handle: RePEc:inm:ormoor:v:43:y:2018:i:3:p:813-837
    DOI: 10.1287/moor.2017.0885
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0885
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
    3. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    4. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    5. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    6. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    7. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    10. repec:dau:papers:123456789/353 is not listed on IDEAS
    11. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    12. repec:dau:papers:123456789/342 is not listed on IDEAS
    13. Ding, Ying, 2014. "Wasserstein-Divergence transportation inequalities and polynomial concentration inequalities," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 77-85.
    14. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    15. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Righi, Marcelo Brutti, 2024. "Star-shaped acceptability indexes," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 170-181.
    2. Dai, Yin & Li, Ruinan, 2021. "Transportation cost inequality for backward stochastic differential equations with mean reflection," Statistics & Probability Letters, Elsevier, vol. 177(C).
    3. Tanoue, Yuta, 2024. "Concentration inequality and the weak law of large numbers for the sum of partly negatively dependent φ-subgaussian random variables," Statistics & Probability Letters, Elsevier, vol. 206(C).
    4. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2022. "Star-Shaped deviations," Papers 2207.08613, arXiv.org.
    5. Lacker Daniel, 2018. "Law invariant risk measures and information divergences," Dependence Modeling, De Gruyter, vol. 6(1), pages 228-258, November.
    6. Li, Ruinan & Wang, Xinyu, 2024. "Talagrand’s transportation inequality for SPDEs with locally monotone drifts," Statistics & Probability Letters, Elsevier, vol. 204(C).
    7. Bahlali, Khaled & Boufoussi, Brahim & Mouchtabih, Soufiane, 2019. "Transportation cost inequality for backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    8. Ludovic Tangpi, 2018. "Concentration of dynamic risk measures in a Brownian filtration," Papers 1805.09014, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Lacker, 2015. "Liquidity, risk measures, and concentration of measure," Papers 1510.07033, arXiv.org, revised Oct 2015.
    2. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    3. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    4. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    5. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    6. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    7. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    8. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    9. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    10. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    11. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    12. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    13. Xiaochuan Deng & Fei Sun, 2019. "Regulator-based risk statistics for portfolios," Papers 1904.08829, arXiv.org, revised Jun 2020.
    14. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    15. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    16. Svindland Gregor, 2009. "Subgradients of law-invariant convex risk measures on L," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 169-199, December.
    17. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    18. Davide La Torre & Marco Maggis, 2012. "A Goal Programming Model with Satisfaction Function for Risk Management and Optimal Portfolio Diversification," Papers 1201.1783, arXiv.org, revised Sep 2012.
    19. Yannick Armenti & Stephane Crepey & Samuel Drapeau & Antonis Papapantoleon, 2015. "Multivariate Shortfall Risk Allocation and Systemic Risk," Papers 1507.05351, arXiv.org, revised Mar 2017.
    20. Zou, Zhenfeng & Hu, Taizhong, 2024. "Adjusted higher-order expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:43:y:2018:i:3:p:813-837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.