IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.4810.html
   My bibliography  Save this paper

High-frequency market-making with inventory constraints and directional bets

Author

Listed:
  • Pietro Fodra
  • Mauricio Labadie

Abstract

In this paper we extend the market-making models with inventory constraints of Avellaneda and Stoikov ("High-frequency trading in a limit-order book", Quantitative Finance Vol.8 No.3 2008) and Gueant, Lehalle and Fernandez-Tapia ("Dealing with inventory risk", Preprint 2011) to the case of a rather general class of mid-price processes, under either exponential or linear PNL utility functions, and we add an inventory-risk-aversion parameter that penalises the marker-maker if she finishes her day with a non-zero inventory. This general, non-martingale framework allows a market-maker to make directional bets on market trends whilst keeping under control her inventory risk. In order to achieve this, the marker-maker places non-symmetric limit orders that favour market orders to hit her bid (resp. ask) quotes if she expects that prices will go up (resp. down). With this inventory-risk-aversion parameter, the market-maker has not only direct control on her inventory risk but she also has indirect control on the moments of her PNL distribution. Therefore, this parameter can be seen as a fine-tuning of the marker-maker's risk-reward profile. In the case of a mean-reverting mid-price, we show numerically that the inventory-risk-aversion parameter gives the market-maker enough room to tailor her risk-reward profile, depending on her risk budgets in inventory and PNL distribution (especially variance, skewness, kurtosis and VaR). For example, when compared to the martingale benchmark, a market can choose to either increase her average PNL by more than 15% and carry a huge risk, on inventory and PNL, or either give up 5% of her benchmark PNL to increase her control on inventory and PNL, as well as increasing her Sharpe ratio by a factor bigger than 2.

Suggested Citation

  • Pietro Fodra & Mauricio Labadie, 2012. "High-frequency market-making with inventory constraints and directional bets," Papers 1206.4810, arXiv.org.
  • Handle: RePEc:arx:papers:1206.4810
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.4810
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stoll, Hans R, 1978. "The Supply of Dealer Services in Securities Markets," Journal of Finance, American Finance Association, vol. 33(4), pages 1133-1151, September.
    2. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    3. repec:dau:papers:123456789/7390 is not listed on IDEAS
    4. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    5. Fabien Guilbaud & Huyen Pham, 2011. "Optimal High Frequency Trading with limit and market orders," Working Papers hal-00603385, HAL.
    6. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    7. Fabien Guilbaud & Huyen Pham, 2011. "Optimal High Frequency Trading with limit and market orders," Papers 1106.5040, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    2. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    3. Pietro Fodra & Mauricio Labadie, 2013. "High-frequency market-making for multi-dimensional Markov processes," Papers 1303.7177, arXiv.org, revised Apr 2013.
    4. Baron Law & Frederi Viens, 2019. "Market Making under a Weakly Consistent Limit Order Book Model," Papers 1903.07222, arXiv.org, revised Jan 2020.
    5. Pietro Fodra & Huy^en Pham, 2013. "High frequency trading and asymptotics for small risk aversion in a Markov renewal model," Papers 1310.1756, arXiv.org, revised Jan 2015.
    6. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    7. Burcu Aydoğan & Ömür Uğur & Ümit Aksoy, 2023. "Optimal Limit Order Book Trading Strategies with Stochastic Volatility in the Underlying Asset," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 289-324, June.
    8. Lester Ingber, 2020. "Developing Bid-Ask Probabilities for High-Frequency Trading," Virtual Economics, The London Academy of Science and Business, vol. 3(2), pages 7-24, April.
    9. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    10. Sofiene El Aoud & Frédéric Abergel, 2015. "A stochastic control approach for options market making," Post-Print hal-01061852, HAL.
    11. Philippe Bergault & David Evangelista & Olivier Gu'eant & Douglas Vieira, 2018. "Closed-form approximations in multi-asset market making," Papers 1810.04383, arXiv.org, revised Sep 2022.
    12. Diego Zabaljauregui, 2020. "Optimal market making under partial information and numerical methods for impulse control games with applications," Papers 2009.06521, arXiv.org.
    13. Marc Hoffmann & Mauricio Labadie & Charles-Albert Lehalle & Gilles Pagès & Huyên Pham & Mathieu Rosenbaum, 2013. "Optimization And Statistical Methods For High Frequency Finance," Post-Print hal-01102785, HAL.
    14. Diego Zabaljauregui & Luciano Campi, 2019. "Optimal market making under partial information with general intensities," Papers 1902.01157, arXiv.org, revised Apr 2020.
    15. Pietro Fodra & Huyen Pham, 2013. "High frequency trading in a Markov renewal model," Working Papers hal-00867113, HAL.
    16. L. Ingber, 2020. "Forecasting with importance-sampling and path-integrals: Applications to COVID-19," Lester Ingber Papers 20fi, Lester Ingber.
    17. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing-Qing Yang & Jia-Wen Gu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "On Optimal Pricing Model for Multiple Dealers in a Competitive Market," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 397-431, January.
    2. Pietro Fodra & Mauricio Labadie, 2013. "High-frequency market-making for multi-dimensional Markov processes," Papers 1303.7177, arXiv.org, revised Apr 2013.
    3. Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
    4. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    5. Baron Law & Frederi Viens, 2019. "Market Making under a Weakly Consistent Limit Order Book Model," Papers 1903.07222, arXiv.org, revised Jan 2020.
    6. Marina Di Giacinto & Claudio Tebaldi & Tai-Ho Wang, 2021. "Optimal order execution under price impact: A hybrid model," Papers 2112.02228, arXiv.org, revised Aug 2022.
    7. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag`es, 2011. "Optimal posting price of limit orders: learning by trading," Papers 1112.2397, arXiv.org, revised Sep 2012.
    8. Luitgard Veraart, 2010. "Optimal Market Making in the Foreign Exchange Market," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 359-372.
    9. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    10. M. Alessandra Crisafi & Andrea Macrina, 2015. "Dark-Pool Perspective of Optimal Market Making," Papers 1502.02863, arXiv.org.
    11. Pietro Fodra & Mauricio Labadie, 2012. "High-frequency market-making with inventory constraints and directional bets," Working Papers hal-00675925, HAL.
    12. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. van Kervel, V.L., 2013. "Competition between stock exchanges and optimal trading," Other publications TiSEM 5c608a0f-527d-441d-a910-e, Tilburg University, School of Economics and Management.
    14. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    15. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    16. Rasmus Fatum & Jesper Pedersen & Peter Norman Sørensen, 2010. "Are the Intraday Effects of Central Bank Intervention on Exchange Rate Spreads Asymmetric and State Dependent?," Discussion Papers 10-20, University of Copenhagen. Department of Economics.
    17. Gehrig, Thomas & Jackson, Matthew, 1998. "Bid-ask spreads with indirect competition among specialists," Journal of Financial Markets, Elsevier, vol. 1(1), pages 89-119, April.
    18. Loukil, Nadia & Yousfi, Ouidad, 2010. "Firm's information environment and stock liquidity: evidence from Tunisian context," MPRA Paper 28699, University Library of Munich, Germany, revised Feb 2011.
    19. Andres, Christian & Cumming, Douglas & Karabiber, Timur & Schweizer, Denis, 2014. "Do markets anticipate capital structure decisions? — Feedback effects in equity liquidity," Journal of Corporate Finance, Elsevier, vol. 27(C), pages 133-156.
    20. Krassimira Naydenova, 2018. "Built-In Problems in the New European Regulations for the Bulgarian Capital Market," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 106-134.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.4810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.