IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.00443.html
   My bibliography  Save this paper

Optimizing S-shaped utility and implications for risk management

Author

Listed:
  • John Armstrong
  • Damiano Brigo

Abstract

We consider market players with tail-risk-seeking behaviour as exemplified by the S-shaped utility introduced by Kahneman and Tversky. We argue that risk measures such as value at risk (VaR) and expected shortfall (ES) are ineffective in constraining such players. We show that, in many standard market models, product design aimed at utility maximization is not constrained at all by VaR or ES bounds: the maximized utility corresponding to the optimal payoff is the same with or without ES constraints. By contrast we show that, in reasonable markets, risk management constraints based on a second more conventional concave utility function can reduce the maximum S-shaped utility that can be achieved by the investor, even if the constraining utility function is only rather modestly concave. It follows that product designs leading to unbounded S-shaped utilities will lead to unbounded negative expected constraining utilities when measured with such conventional utility functions. To prove these latter results we solve a general problem of optimizing an investor expected utility under risk management constraints where both investor and risk manager have conventional concave utility functions, but the investor has limited liability. We illustrate our results throughout with the example of the Black--Scholes option market. These results are particularly important given the historical role of VaR and that ES was endorsed by the Basel committee in 2012--2013.

Suggested Citation

  • John Armstrong & Damiano Brigo, 2017. "Optimizing S-shaped utility and implications for risk management," Papers 1711.00443, arXiv.org, revised Jan 2018.
  • Handle: RePEc:arx:papers:1711.00443
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.00443
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    2. Leitner Johannes, 2006. "Monetary utility over coherent risk ratios," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-15, July.
    3. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    4. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    5. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    6. Ormos Mihály & Timotity Dusán, 2017. "The Case of “Less is More”: Modelling Risk-Preference with Expected Downside Risk," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 17(2), pages 1-14, June.
    7. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    8. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    9. Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
    10. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Müller, Fernanda Maria & Santos, Samuel Solgon & Righi, Marcelo Brutti, 2023. "A description of the COVID-19 outbreak role in financial risk forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    12. Gyöngyi Bugár, 2019. "A Breakthrough Idea in Risk Measure Validation – Is the Way Paved for an Effective Expected Shortfall Backtest?," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 18(4), pages 130-145.
    13. Fulga, Cristinca, 2016. "Portfolio optimization under loss aversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 310-322.
    14. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.
    15. Annika Homburg & Christian H. Weiß & Gabriel Frahm & Layth C. Alwan & Rainer Göb, 2021. "Analysis and Forecasting of Risk in Count Processes," JRFM, MDPI, vol. 14(4), pages 1-25, April.
    16. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    17. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    18. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    19. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    20. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.00443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.