IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i4p182-d537533.html
   My bibliography  Save this article

Analysis and Forecasting of Risk in Count Processes

Author

Listed:
  • Annika Homburg

    (Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Christian H. Weiß

    (Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Gabriel Frahm

    (Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany)

  • Layth C. Alwan

    (Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA)

  • Rainer Göb

    (Department of Statistics, Institute of Mathematics, University of Würzburg, 97070 Würzburg, Germany)

Abstract

Risk measures are commonly used to prepare for a prospective occurrence of an adverse event. If we are concerned with discrete risk phenomena such as counts of natural disasters, counts of infections by a serious disease, or counts of certain economic events, then the required risk forecasts are to be computed for an underlying count process. In practice, however, the discrete nature of count data is sometimes ignored and risk forecasts are calculated based on Gaussian time series models. But even if methods from count time series analysis are used in an adequate manner, the performance of risk forecasting is affected by estimation uncertainty as well as certain discreteness phenomena. To get a thorough overview of the aforementioned issues in risk forecasting of count processes, a comprehensive simulation study was done considering a broad variety of risk measures and count time series models. It becomes clear that Gaussian approximate risk forecasts substantially distort risk assessment and, thus, should be avoided. In order to account for the apparent estimation uncertainty in risk forecasting, we use bootstrap approaches for count time series. The relevance and the application of the proposed approaches are illustrated by real data examples about counts of storm surges and counts of financial transactions.

Suggested Citation

  • Annika Homburg & Christian H. Weiß & Gabriel Frahm & Layth C. Alwan & Rainer Göb, 2021. "Analysis and Forecasting of Risk in Count Processes," JRFM, MDPI, vol. 14(4), pages 1-25, April.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:4:p:182-:d:537533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/4/182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/4/182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brännäs, Kurt & Quoreshi, Shahiduzzaman, 2004. "Integer-Valued Moving Average Modelling of the Number of Transactions in Stocks," Umeå Economic Studies 637, Umeå University, Department of Economics.
    2. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    3. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    4. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    5. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    6. Fabio Bellini & Elena Di Bernardino, 2017. "Risk management with expectiles," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 487-506, May.
    7. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    8. Yanyuan Ma & Marc Genton & Emanuel Parzen, 2011. "Asymptotic properties of sample quantiles of discrete distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 227-243, April.
    9. Stone, Bernell K, 1973. "A General Class of Three-Parameter Risk Measures," Journal of Finance, American Finance Association, vol. 28(3), pages 675-685, June.
    10. Stephen Chan & Saralees Nadarajah, 2019. "Risk: An R Package for Financial Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1337-1351, April.
    11. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    12. Kerkhof, Jeroen & Melenberg, Bertrand & Schumacher, Hans, 2010. "Model risk and capital reserves," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 267-279, January.
    13. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Daniel Vaughan-Whitehead, 2014. "Introduction," Economia & lavoro, Carocci editore, issue 2, pages 5-8.
    16. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    17. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxime Faymonville & Carsten Jentsch & Christian H. Weiß & Boris Aleksandrov, 2023. "Semiparametric estimation of INAR models using roughness penalization," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 365-400, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    2. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    3. Marcel Brautigam & Marie Kratz, 2020. "The Impact of the Choice of Risk and Dispersion Measure on Procyclicality," Papers 2001.00529, arXiv.org.
    4. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    5. Jascha Alexander & Christian Laudag'e & Jorn Sass, 2024. "Risk measures based on target risk profiles," Papers 2409.17676, arXiv.org.
    6. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    7. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    8. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    9. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    10. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    11. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    12. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    13. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    14. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    15. Fernanda Maria Müller & Marcelo Brutti Righi, 2018. "Numerical comparison of multivariate models to forecasting risk measures," Risk Management, Palgrave Macmillan, vol. 20(1), pages 29-50, February.
    16. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    17. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    18. Albrecht, Peter, 2003. "Risk measures," Papers 03-01, Sonderforschungsbreich 504.
    19. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    20. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:4:p:182-:d:537533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.