IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.07492.html
   My bibliography  Save this paper

Multilevel estimation of expected exit times and other functionals of stopped diffusions

Author

Listed:
  • Michael B. Giles
  • Francisco Bernal

Abstract

This paper proposes and analyses a new multilevel Monte Carlo method for the estimation of mean exit times for multi-dimensional Brownian diffusions, and associated functionals which correspond to solutions to high-dimensional parabolic PDEs through the Feynman-Kac formula. In particular, it is proved that the complexity to achieve an $\varepsilon$ root-mean-square error is $O(\varepsilon^{-2}\, |\!\log \varepsilon|^3)$.

Suggested Citation

  • Michael B. Giles & Francisco Bernal, 2017. "Multilevel estimation of expected exit times and other functionals of stopped diffusions," Papers 1710.07492, arXiv.org, revised Sep 2018.
  • Handle: RePEc:arx:papers:1710.07492
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.07492
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. Bujok & B. M. Hambly & C. Reisinger, 2015. "Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 579-604, September.
    2. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    3. Sam Howison & Mario Steinberg, 2007. "A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 63-89.
    4. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    5. Sam Howison, 2007. "A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 2: Bermudan Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 91-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    2. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    3. Bernard, Carole & Le Courtois, Olivier & Quittard-Pinon, François, 2008. "Pricing derivatives with barriers in a stochastic interest rate environment," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2903-2938, September.
    4. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    5. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    6. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    7. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    8. Tian, Miao & Yang, Xiangfeng & Zhang, Yi, 2019. "Barrier option pricing of mean-reverting stock model in uncertain environment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 126-143.
    9. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    10. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    11. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    12. Xiao, Shuang & Ma, Shihua, 2016. "Pricing discrete double barrier options under Lévy processes: An extension of the method by Milev and Tagliani," Finance Research Letters, Elsevier, vol. 19(C), pages 67-74.
    13. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
    14. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    15. Takashi Kato & Akihiko Takahashi & Toshihiro Yamada, 2012. "A Semi-group Expansion for Pricing Barrier Options," CIRJE F-Series CIRJE-F-841, CIRJE, Faculty of Economics, University of Tokyo.
    16. Yang, Nian & Chen, Nan & Liu, Yanchu & Wan, Xiangwei, 2017. "Approximate arbitrage-free option pricing under the SABR model," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 198-214.
    17. Daphné Giorgi & Vincent Lemaire & Gilles Pagès, 2020. "Weak Error for Nested Multilevel Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1325-1348, September.
    18. Simona Svoboda-Greenwood, 2009. "Displaced Diffusion as an Approximation of the Constant Elasticity of Variance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 269-286.
    19. Sam Howison & Mario Steinberg, 2007. "A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 63-89.
    20. Jiefei Yang & Guanglian Li, 2023. "On Sparse Grid Interpolation for American Option Pricing with Multiple Underlying Assets," Papers 2309.08287, arXiv.org, revised Sep 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.07492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.