IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1707.03516.html
   My bibliography  Save this paper

Portfolio Risk Assessment using Copula Models

Author

Listed:
  • Mikhail Semenov
  • Daulet Smagulov

Abstract

In the paper, we use and investigate copulas models to represent multivariate dependence in financial time series. We propose the algorithm of risk measure computation using copula models. Using the optimal mean-$CVaR$ portfolio we compute portfolio's Profit and Loss series and corresponded risk measures curves. Value-at-risk and Conditional-Value-at-risk curves were simulated by three copula models: full Gaussian, Student's $t$ and regular vine copula. These risk curves are lower than historical values of the risk measures curve. All three models have superior prediction ability than a usual empirical method. Further directions of research are described.

Suggested Citation

  • Mikhail Semenov & Daulet Smagulov, 2017. "Portfolio Risk Assessment using Copula Models," Papers 1707.03516, arXiv.org.
  • Handle: RePEc:arx:papers:1707.03516
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1707.03516
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Stoyanov, Stoyan V. & Rachev, Svetlozar T. & Fabozzi, Frank J., 2013. "CVaR sensitivity with respect to tail thickness," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 977-988.
    3. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    4. repec:dau:papers:123456789/2332 is not listed on IDEAS
    5. Thierry Ane & Cecile Kharoubi, 2003. "Dependence Structure and Risk Measure," The Journal of Business, University of Chicago Press, vol. 76(3), pages 411-438, July.
    6. Kritski, Oleg & Ulyanova, Marina, 2007. "Assessment of Multivariate Financial Risks of a Stock Share Portfolio," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 8(4), pages 3-17.
    7. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    9. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    10. Cooke, R.M. & Kurowicka, D. & Wilson, K., 2015. "Sampling, conditionalizing, counting, merging, searching regular vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 4-18.
    11. Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.
    12. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    13. Fermanian, Jean-David & Scaillet, Olivier, 2003. "Nonparametric estimation of copulas for time series," Working Papers unige:41797, University of Geneva, Geneva School of Economics and Management.
    14. Clarke, Kevin A., 2007. "A Simple Distribution-Free Test for Nonnested Model Selection," Political Analysis, Cambridge University Press, vol. 15(3), pages 347-363, July.
    15. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    16. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    17. Eckhard Limpert & Werner A Stahel, 2011. "Problems with Using the Normal Distribution – and Ways to Improve Quality and Efficiency of Data Analysis," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-8, July.
    18. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    19. Cécile Kharoubi & Thierry Ané, 2003. "Dependance Structure and Risk Measure," Post-Print halshs-00165144, HAL.
    20. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    21. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    22. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Lu & Sujit Ghosh, 2023. "Nonparametric Estimation of Multivariate Copula Using Empirical Bayes Methods," Mathematics, MDPI, vol. 11(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    2. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    3. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    4. Gregor Weiß, 2011. "Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study," Computational Statistics, Springer, vol. 26(1), pages 31-54, March.
    5. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    6. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    7. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    8. Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
    9. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    10. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    11. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    12. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    13. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    14. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence and asymmetric responses between coffee varieties," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    15. Benos, Nikos & Stavrakoudis, Athanassios, 2022. "Okun's law: Copula-based evidence from G7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 478-491.
    16. Zhichao Zhang & Li Ding & Fan Zhang & Zhuang Zhang, 2015. "Optimal Currency Composition for China's Foreign Reserves: A Copula Approach," The World Economy, Wiley Blackwell, vol. 38(12), pages 1947-1965, December.
    17. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    18. Panagiotou, Dimitrios & Stavrakoudis, Athanassios, 2017. "Vertical price relationships between different cuts and quality grades in the U.S. beef marketing channel: A wholesale-retail analysis," The Journal of Economic Asymmetries, Elsevier, vol. 16(C), pages 53-63.
    19. Crook, Jonathan & Moreira, Fernando, 2011. "Checking for asymmetric default dependence in a credit card portfolio: A copula approach," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 728-742, September.
    20. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1707.03516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.