IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1706.07821.html
   My bibliography  Save this paper

An Investigation of the Structural Characteristics of the Indian IT Sector and the Capital Goods Sector: An Application of the R Programming in Time Series Decomposition and Forecasting

Author

Listed:
  • Jaydip Sen
  • Tamal Datta Chaudhuri

Abstract

Time series analysis and forecasting of stock market prices has been a very active area of research over the last two decades. Availability of extremely fast and parallel architecture of computing and sophisticated algorithms has made it possible to extract, store, process and analyze high volume stock market time series data very efficiently. In this paper, we have used time series data of the two sectors of the Indian economy: Information Technology and Capital Goods for the period January 2009 till April 2016 and have studied the relationships of these two time series with the time series of DJIA index, NIFTY index and the US Dollar to Indian Rupee exchange rate. We establish by graphical and statistical tests that while the IT sector of India has a strong association with DJIA index and the Dollar to Rupee exchange rate, the Indian CG sector exhibits a strong association with the NIFTY index. We contend that these observations corroborate our hypotheses that the Indian IT sector is strongly coupled with the world economy whereas the CG sector of India reflects internal economic growth of India. We also present several models of regression between the time series which exhibit strong association among them. The effectiveness of these models have been demonstrated by very low values of their forecasting errors.

Suggested Citation

  • Jaydip Sen & Tamal Datta Chaudhuri, 2017. "An Investigation of the Structural Characteristics of the Indian IT Sector and the Capital Goods Sector: An Application of the R Programming in Time Series Decomposition and Forecasting," Papers 1706.07821, arXiv.org.
  • Handle: RePEc:arx:papers:1706.07821
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1706.07821
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basalto, N. & Bellotti, R. & De Carlo, F. & Facchi, P. & Pascazio, S., 2005. "Clustering stock market companies via chaotic map synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 196-206.
    2. Jaydip SEN & Tamal DATTA CHAUDHURI, 2016. "An Alternative Framework for Time Series Decomposition and Forecastingand its Relevance for Portfolio Choice – A Comparative Study of the Indian Consumer Durable and Small Cap Sectors," Journal of Economics Library, KSP Journals, vol. 3(2), pages 303-326, June.
    3. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
    4. Jaydip Sen & Tamal Datta Chaudhuri, 2016. "Decomposition of Time Series Data of Stock Markets and its Implications for Prediction: An Application for the Indian Auto Sector," Papers 1601.02407, arXiv.org.
    5. Bentes, Sónia R. & Menezes, Rui & Mendes, Diana A., 2008. "Long memory and volatility clustering: Is the empirical evidence consistent across stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3826-3830.
    6. M. Hanias & P. Curtis & E. Thalassinos, 2012. "Time Series Prediction with Neural Networks for the Athens Stock Exchange Indicator," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 23-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sidra Mehtab & Jaydip Sen, 2020. "A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models," Papers 2004.11697, arXiv.org, revised May 2021.
    2. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    3. Jaydip Sen & Tamal Datta Chaudhuri, 2017. "A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector," Papers 1705.01144, arXiv.org.
    4. Sidra Mehtab & Jaydip Sen, 2019. "A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing," Papers 1912.07700, arXiv.org.
    5. Jaydip Sen, 2018. "Stock composition of mutual funds and fund style: a time series decomposition approach towards testing for consistency," International Journal of Business Forecasting and Marketing Intelligence, Inderscience Enterprises Ltd, vol. 4(3), pages 235-292.
    6. Sidra Mehtab & Jaydip Sen, 2020. "Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries," Papers 2001.09769, arXiv.org.
    7. repec:arx:papers:1604.04044 is not listed on IDEAS
    8. Jaydip Sen & Saikat Mondal & Sidra Mehtab, 2021. "Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model," Papers 2111.04976, arXiv.org.
    9. Sidra Mehtab & Jaydip Sen & Abhishek Dutta, 2020. "Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models," Papers 2009.10819, arXiv.org.
    10. Jaydip SEN & Tamal DATTA CHAUDHURI, 2016. "An Alternative Framework for Time Series Decomposition and Forecastingand its Relevance for Portfolio Choice – A Comparative Study of the Indian Consumer Durable and Small Cap Sectors," Journal of Economics Library, KSP Journals, vol. 3(2), pages 303-326, June.
    11. Ananda Chatterjee & Hrisav Bhowmick & Jaydip Sen, 2021. "Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models," Papers 2111.01137, arXiv.org.
    12. Aty Herawati & Angger Setiadi Putra, 2018. "The Influence of Fundamental Analysis on Stock Prices: The Case of Food and Beverage Industries," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 316-326.
    13. Salois, Matthew & Moss, Charles, 2010. "An Information Approach to the Dynamics in Farm Income: Implications for Farmland Markets," MPRA Paper 26850, University Library of Munich, Germany.
    14. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    15. Kumar, Dilip, 2014. "Long range dependence in the high frequency USD/INR exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 134-148.
    16. Sidra Mehtab & Jaydip Sen & Subhasis Dasgupta, 2020. "Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep Learning Models," Papers 2011.08011, arXiv.org, revised Jan 2021.
    17. Agliari, Anna & Naimzada, Ahmad & Pecora, Nicolò, 2017. "Dynamic effects of memory in a cobweb model with competing technologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 340-350.
    18. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    19. Esteban Miguélez & Jonathan Spiteri & Simon Grima, 2019. "Establishing the Contributing Factors to the Resurrection of PIIGS Banks Following the Crisis: A Panel Data Analysis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 3-34.
    20. Aty Herawati & Angger Setiadi Putra, 2018. "The Influence of Fundamental Analysis on Stock Prices: The Case of Food and Beverage Industries," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 316-326.
    21. R. Parianom, 2018. "Economic Growth and Financial Intermediation in Southest Asia," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 337-347.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1706.07821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.