IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v53y2005i5p764-779.html
   My bibliography  Save this article

A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options

Author

Listed:
  • M. Broadie

    (Graduate School of Business, Columbia University, 3022 Broadway, New York, New York 10027-6902)

  • Y. Yamamoto

    (Department of Computational Science and Engineering, Nagoya University, Nagoya 464-8603, Japan)

Abstract

This paper develops algorithms for the pricing of discretely sampled barrier, lookback, and hindsight options and discretely exercisable American options. Under the Black-Scholes framework, the pricing of these options can be reduced to evaluation of a series of convolutions of the Gaussian distribution and a known function. We compute these convolutions efficiently using the double-exponential integration formula and the fast Gauss transform. The resulting algorithms have computational complexity of O(nN) , where the number of monitoring/exercise dates is n and the number of sample points at each date is N , and our results show the error decreases exponentially with N . We also extend the approach and provide results for Merton’s lognormal jump-diffusion model.

Suggested Citation

  • M. Broadie & Y. Yamamoto, 2005. "A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options," Operations Research, INFORMS, vol. 53(5), pages 764-779, October.
  • Handle: RePEc:inm:oropre:v:53:y:2005:i:5:p:764-779
    DOI: 10.1287/opre.1050.0219
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1050.0219
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1050.0219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Conze, Antoine & Viswanathan, 1991. "Path Dependent Options: The Case of Lookback Options," Journal of Finance, American Finance Association, vol. 46(5), pages 1893-1907, December.
    2. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    3. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    4. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    5. Wai Man Tse & Leong Kwan Li & Kai Wang Ng, 2001. "Pricing Discrete Barrier and Hindsight Options with the Tridiagonal Probability Algorithm," Management Science, INFORMS, vol. 47(3), pages 383-393, March.
    6. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    7. Mark Broadie & Yusaku Yamamoto, 2003. "Application of the Fast Gauss Transform to Option Pricing," Management Science, INFORMS, vol. 49(8), pages 1071-1088, August.
    8. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    9. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    10. Amin, Kaushik I, 1993. "Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
    11. Babbs, Simon, 2000. "Binomial valuation of lookback options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1499-1525, October.
    12. Jonathan Alford and Nick Webber, 2001. "Very High Order Lattice Methods for One Factor Models," Computing in Economics and Finance 2001 26, Society for Computational Economics.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 241-264, June.
    15. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    17. Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Xiao, Shuang & Ma, Shihua, 2016. "Pricing discrete double barrier options under Lévy processes: An extension of the method by Milev and Tagliani," Finance Research Letters, Elsevier, vol. 19(C), pages 67-74.
    3. Tat Lung Chan & Nicholas Hale, 2018. "Hedging and Pricing European-type, Early-Exercise and Discrete Barrier Options using Algorithm for the Convolution of Legendre Series," Papers 1811.09257, arXiv.org, revised May 2019.
    4. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
    5. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    6. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    7. Tristan Guillaume, 2023. "Multitouch Options," JRFM, MDPI, vol. 16(6), pages 1-29, June.
    8. Jie Chen & Liaoyuan Fan & Lingfei Li & Gongqiu Zhang, 2022. "A multidimensional Hilbert transform approach for barrier option pricing and survival probability calculation," Review of Derivatives Research, Springer, vol. 25(2), pages 189-232, July.
    9. Liming Feng & Vadim Linetsky, 2009. "Computing exponential moments of the discrete maximum of a Lévy process and lookback options," Finance and Stochastics, Springer, vol. 13(4), pages 501-529, September.
    10. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.
    11. Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2024. "Method of Lines for Valuation and Sensitivities of Bermudan Options," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 245-270, January.
    12. Huang, Min & Luo, Guo, 2022. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    13. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    14. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    15. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    16. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    17. Roger Lee & Dan Wang, 2012. "Displaced lognormal volatility skews: analysis and applications to stochastic volatility simulations," Annals of Finance, Springer, vol. 8(2), pages 159-181, May.
    18. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Lagrange Interpolation on Jacobi Node," Papers 1712.01060, arXiv.org, revised Feb 2018.
    19. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    20. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet," Papers 1703.09129, arXiv.org, revised Mar 2017.
    21. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    22. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    23. Min Huang & Guo Luo, 2019. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Papers 1905.13407, arXiv.org, revised Jun 2019.
    24. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    25. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    4. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    7. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    8. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    9. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    10. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    11. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    12. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    13. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    15. Jin-Yu Zhang & Wen-Bo Wu & Yong Li & Zhu-Sheng Lou, 2021. "Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 867-884, October.
    16. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    17. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    18. Cheuk, Terry H. F. & Vorst, Ton C. F., 1997. "Currency lookback options and observation frequency: A binomial approach," Journal of International Money and Finance, Elsevier, vol. 16(2), pages 173-187, April.
    19. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
    20. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.

    More about this item

    Keywords

    finance: asset pricing;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:53:y:2005:i:5:p:764-779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.