IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v471y2017icp733-749.html
   My bibliography  Save this article

Wealth of the world’s richest publicly traded companies per industry and per employee: Gamma, Log-normal and Pareto power-law as universal distributions?

Author

Listed:
  • Soriano-Hernández, P.
  • del Castillo-Mussot, M.
  • Campirán-Chávez, I.
  • Montemayor-Aldrete, J.A.

Abstract

Forbes Magazine published its list of leading or strongest publicly-traded two thousand companies in the world (G-2000) based on four independent metrics: sales or revenues, profits, assets and market value. Every one of these wealth metrics yields particular information on the corporate size or wealth size of each firm. The G-2000 cumulative probability wealth distribution per employee (per capita) for all four metrics exhibits a two-class structure: quasi-exponential in the lower part, and a Pareto power-law in the higher part. These two-class structure per capita distributions are qualitatively similar to income and wealth distributions in many countries of the world, but the fraction of firms per employee within the high-class Pareto is about 49% in sales per employee, and 33% after averaging on the four metrics, whereas in countries the fraction of rich agents in the Pareto zone is less than 10%. The quasi-exponential zone can be adjusted by Gamma or Log-normal distributions. On the other hand, Forbes classifies the G-2000 firms in 82 different industries or economic activities. Within each industry, the wealth distribution per employee also follows a two-class structure, but when the aggregate wealth of firms in each industry for the four metrics is divided by the total number of employees in that industry, then the 82 points of the aggregate wealth distribution by industry per employee can be well adjusted by quasi-exponential curves for the four metrics.

Suggested Citation

  • Soriano-Hernández, P. & del Castillo-Mussot, M. & Campirán-Chávez, I. & Montemayor-Aldrete, J.A., 2017. "Wealth of the world’s richest publicly traded companies per industry and per employee: Gamma, Log-normal and Pareto power-law as universal distributions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 733-749.
  • Handle: RePEc:eee:phsmap:v:471:y:2017:i:c:p:733-749
    DOI: 10.1016/j.physa.2016.12.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116310238
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.12.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wataru Souma, 2002. "Physics of Personal Income," Papers cond-mat/0202388, arXiv.org.
    2. Fujiwara, Yoshi & Souma, Wataru & Aoyama, Hideaki & Kaizoji, Taisei & Aoki, Masanao, 2003. "Growth and fluctuations of personal income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 598-604.
    3. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    4. Yi Chen & Frank A. Cowell, 2017. "Mobility in China," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(2), pages 203-218, June.
    5. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    6. Erzo G. J. Luttmer, 2007. "Selection, Growth, and the Size Distribution of Firms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1103-1144.
    7. Gabaix, Xavier & Ioannides, Yannis M., 2004. "The evolution of city size distributions," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 53, pages 2341-2378, Elsevier.
    8. Aoyama, Hideaki & Souma, Wataru & Fujiwara, Yoshi, 2003. "Growth and fluctuations of personal and company's income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 352-358.
    9. Andrew B. Bernard & J. Bradford Jensen & Stephen J. Redding & Peter K. Schott, 2012. "The Empirics of Firm Heterogeneity and International Trade," Annual Review of Economics, Annual Reviews, vol. 4(1), pages 283-313, July.
    10. Xianming Zhou, 2000. "CEO pay, firm size, and corporate performance: evidence from Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 33(1), pages 213-251, February.
    11. Soriano-Hernández, P. & del Castillo-Mussot, M. & Córdoba-Rodríguez, O. & Mansilla-Corona, R., 2017. "Non-stationary individual and household income of poor, rich and middle classes in Mexico," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 403-413.
    12. Jagielski, Maciej & Kutner, Ryszard, 2013. "Modelling of income distribution in the European Union with the Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2130-2138.
    13. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    14. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2009. "Microeconomics of the ideal gas like market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4151-4158.
    15. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    16. Anand Banerjee & Victor M. Yakovenko, 2009. "Universal patterns of inequality," Papers 0912.4898, arXiv.org, revised Apr 2010.
    17. Shaikh, Anwar & Papanikolaou, Nikolaos & Wiener, Noe, 2014. "Race, gender and the econophysics of income distribution in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 54-60.
    18. Xianming Zhou, 2000. "CEO pay, firm size, and corporate performance: evidence from Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 33(1), pages 213-251, February.
    19. Guo, Jinzhong & Xu, Qi & Chen, Qinghua & Wang, Yougui, 2013. "Firm size distribution and mobility of the top 500 firms in China, the United States and the world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2903-2914.
    20. A. Drăgulescu & V.M. Yakovenko, 2001. "Evidence for the exponential distribution of income in the USA," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 585-589, April.
    21. Stanley, Michael H. R. & Buldyrev, Sergey V. & Havlin, Shlomo & Mantegna, Rosario N. & Salinger, Michael A. & Eugene Stanley, H., 1995. "Zipf plots and the size distribution of firms," Economics Letters, Elsevier, vol. 49(4), pages 453-457, October.
    22. Gallegati, M. & Palestrini, A., 2010. "The complex behavior of firms' size dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 69-76, July.
    23. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    2. Tomaschitz, Roman, 2020. "Multiply broken power-law densities as survival functions: An alternative to Pareto and lognormal fits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    2. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    3. Néda, Zoltán & Gere, István & Biró, Tamás S. & Tóth, Géza & Derzsy, Noemi, 2020. "Scaling in income inequalities and its dynamical origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Alberto Russo, 2014. "A Stochastic Model of Wealth Accumulation with Class Division," Metroeconomica, Wiley Blackwell, vol. 65(1), pages 1-35, February.
    5. Zoltan Neda & Istvan Gere & Tamas S. Biro & Geza Toth & Noemi Derzsy, 2019. "Scaling in Income Inequalities and its Dynamical Origin," Papers 1911.02449, arXiv.org, revised Mar 2020.
    6. Díaz, Juan D. & Gutiérrez Cubillos, Pablo & Tapia Griñen, Pablo, 2021. "The exponential Pareto model with hidden income processes: Evidence from Chile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    8. Soriano-Hernández, P. & del Castillo-Mussot, M. & Córdoba-Rodríguez, O. & Mansilla-Corona, R., 2017. "Non-stationary individual and household income of poor, rich and middle classes in Mexico," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 403-413.
    9. Victor M. Yakovenko, 2012. "Applications of statistical mechanics to economics: Entropic origin of the probability distributions of money, income, and energy consumption," Papers 1204.6483, arXiv.org.
    10. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    11. Cui, Jian & Pan, Qiuhui & Qian, Qian & He, Mingfeng & Sun, Qilin, 2013. "A multi-agent dynamic model based on different kinds of bequests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1393-1397.
    12. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    13. Yong Tao & Xiangjun Wu & Tao Zhou & Weibo Yan & Yanyuxiang Huang & Han Yu & Benedict Mondal & Victor M. Yakovenko, 2019. "Exponential structure of income inequality: evidence from 67 countries," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 345-376, June.
    14. Markus P. A. Schneider, 2018. "Revisiting the thermal and superthermal two-class distribution of incomes: A critical perspective," Papers 1804.06341, arXiv.org.
    15. Anindya S. Chakrabarti, 2017. "Scale-free distribution as an economic invariant: a theoretical approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 1-26, April.
    16. Nikolaos Papanikolaou, 2020. "The Econophysics of Labor Income," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 107-122.
    17. Chakrabarti, Anindya S., 2012. "Effects of the turnover rate on the size distribution of firms: An application of the kinetic exchange models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6039-6050.
    18. Anindya S. Chakrabarti, 2011. "Firm dynamics in a closed, conserved economy: A model of size distribution of employment and related statistics," Papers 1112.2168, arXiv.org.
    19. Chatterjee, Arnab & Chakrabarti, Anindya S. & Ghosh, Asim & Chakraborti, Anirban & Nandi, Tushar K., 2016. "Invariant features of spatial inequality in consumption: The case of India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 169-181.
    20. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:471:y:2017:i:c:p:733-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.