IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1601.01128.html
   My bibliography  Save this paper

Option pricing in the model with stochastic volatility driven by Ornstein--Uhlenbeck process. Simulation

Author

Listed:
  • Sergii Kuchuk-Iatsenko
  • Yuliya Mishura

Abstract

We consider a discrete-time approximation of paths of an Ornstein--Uhlenbeck process as a mean for estimation of a price of European call option in the model of financial market with stochastic volatility. The Euler--Maruyama approximation scheme is implemented. We determine the estimates for the option price for predetermined sets of parameters. The rate of convergence of the price and an average volatility when discretization intervals tighten are determined. Discretization precision is analyzed for the case where the exact value of the price can be derived.

Suggested Citation

  • Sergii Kuchuk-Iatsenko & Yuliya Mishura, 2016. "Option pricing in the model with stochastic volatility driven by Ornstein--Uhlenbeck process. Simulation," Papers 1601.01128, arXiv.org.
  • Handle: RePEc:arx:papers:1601.01128
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1601.01128
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Van Haastrecht & Antoon Pelsser, 2010. "Efficient, Almost Exact Simulation Of The Heston Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-43.
    2. Paul Brockman & Mustafa Chowdhury, 1997. "Deterministic versus stochastic volatility: implications for option pricing models," Applied Financial Economics, Taylor & Francis Journals, vol. 7(5), pages 499-505.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    4. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    5. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    6. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, October.
    7. Sergii Kuchuk-Iatsenko & Yuliya Mishura, 2015. "Pricing the European call option in the model with stochastic volatility driven by Ornstein--Uhlenbeck process. Exact formulas," Papers 1510.01848, arXiv.org.
    8. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    9. Sheikh, Aamir M., 1991. "Transaction Data Tests of S&P 100 Call Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(4), pages 459-475, December.
    10. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    2. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    3. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    4. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    6. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.
    7. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    8. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    9. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
    10. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    11. Kim, Jerim & Kim, Bara & Moon, Kyoung-Sook & Wee, In-Suk, 2012. "Valuation of power options under Heston's stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1796-1813.
    12. Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
    13. Jaehyuk Choi & Yue Kuen Kwok, 2023. "Simulation schemes for the Heston model with Poisson conditioning," Papers 2301.02800, arXiv.org, revised Nov 2023.
    14. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    15. Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.
    16. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.
    17. Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
    18. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    19. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    20. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1601.01128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.